首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fan Z  Bau B  Yang H  Aigner T 《Cytokine》2004,28(1):17-24
Interleukin-1 (IL-1) is an important catabolic cytokine in rheumatoid and osteoarthritic joint disease. Besides inducing a catabolic response in articular chondrocytes it also strongly induces synergistic mediators such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The molecular basis of this is so far hardly understood. The aim of our study was to evaluate in vitro and in vivo whether IL-6 and LIF are differentially expressed in normal human and osteoarthritic adult articular chondrocytes and to investigate the potential intracellular signaling pathways of IL-1 involved in these gene regulation events. IL-6 and LIF mRNA expressions were found only at low levels in normal adult articular cartilage. Neither IL-6 nor LIF was strongly over-expressed in osteoarthritic cartilage degeneration. Clearly, both IL-6 and LIF can be very efficiently induced by IL-1beta in articular chondrocytes in vitro. However, this induction was somewhat less in osteoarthritic cells, which were overall activated in terms of expression of both cytokines without stimulation. Experiments using pathway selective inhibitors showed that intracellular signaling of IL-1beta for IL-6 and LIF is mediated by a mixture of the IL-1 signaling cascades. However, the ERK-pathway appeared to be particularly important and might be, therefore, of particular potential if one intends to block induction of these molecules by IL-1 in arthritic joint disease.  相似文献   

2.
3.
Anabolic and catabolic cytokines and growth factors such as BMP-7 and IL-1beta play a central role in controlling the balance between degradation and repair of normal and (osteo)arthritic articular cartilage matrix. In this report, we investigated the response of articular chondrocytes to these factors IL-1beta and BMP-7 in terms of changes in gene expression levels. Large scale analysis was performed on primary human adult articular chondrocytes isolated from two human, independent donors cultured in alginate beads (non-stimulated and stimulated with IL-1beta and BMP-7 for 48 h) using Affymetrix gene chips (oligo-arrays). Biostatistical and bioinformatic evaluation of gene expression pattern was performed using the Resolver software (Rosetta). Part of the results were confirmed using real-time PCR. IL-1beta modulated significantly 909 out of 3459 genes detectable, whereas BMP-7 influenced only 36 out of 3440. BMP-7 induced mainly anabolic activation of chondrocytes including classical target genes such as collagen type II and aggrecan, while IL-1beta, both, significantly modulated the gene expression levels of numerous genes; namely, IL-1beta down-regulated the expression of anabolic genes and induced catabolic genes and mediators. Our data indicate that BMP-7 has only a limited effect on differentiated cells, whereas IL-1beta causes a dramatic change in gene expression pattern, i.e. induced or repressed much more genes. This presumably reflects the fact that BMP-7 signaling is effected via one pathway only (i.e. Smad-pathway) whereas IL-1beta is able to signal via a broad variety of intracellular signaling cascades involving the JNK, p38, NFkB and Erk pathways and even influencing BMP signaling.  相似文献   

4.
Articular cartilage is an avascular, non-insulin-sensitive tissue that utilizes glucose as the main energy source, a precursor for glycosaminoglycan synthesis, and a regulator of gene expression. Facilitated glucose transport represents the first rate-limiting step in glucose metabolism. Previously, we demonstrated that glucose transport in chondrocytes is regulated by proinflammatory cytokines via upregulation of GLUT mRNA and protein expression. The objective of the present study was to determine differences in molecular mechanisms regulating glucose transport in chondrocytes stimulated with the anabolic transforming growth factor-beta1 (TGF-beta1) vs. the catabolic and proinflammatory cytokine IL-1beta. Both TGF-beta1 and IL-1beta accelerate glucose transport in chondrocytes. Although both IL-1beta and TGF-beta1 enhance glucose transport in chondrocytes to a similar magnitude, IL-1beta induces significantly higher levels of lactate. TGF-beta1-stimulated glucose transport is not associated with increased expression or membrane incorporation of GLUT1, -3, -6, -8, and -10 and depends on PKC and ERK activation. In contrast, IL-1beta-stimulated glucose transport is accompanied by increased expression and membrane incorporation of GLUT1 and -6 and depends upon activation of PKC and p38 MAP kinase. In conclusion, anabolic and catabolic stimuli regulate facilitated glucose transport in human articular chondrocytes via different effector and signaling mechanisms, and they have distinct effects on glycolysis.  相似文献   

5.

Introduction

Fibronectin fragments have been found in the articular cartilage and synovial fluid of patients with osteoarthritis and rheumatoid arthritis. These matrix fragments can stimulate production of multiple mediators of matrix destruction, including various cytokines and metalloproteinases. The purpose of this study was to discover novel mediators of cartilage destruction using fibronectin fragments as a stimulus.

Methods

Human articular cartilage was obtained from tissue donors and from osteoarthritic cartilage removed at the time of knee replacement surgery. Enzymatically isolated chondrocytes in serum-free cultures were stimulated overnight with the 110 kDa α5β1 integrin-binding fibronectin fragment or with IL-1, IL-6, or IL-7. Cytokines and matrix metalloproteinases released into the media were detected using antibody arrays and quantified by ELISA. IL-7 receptor expression was evaluated by flow cytometry, immunocytochemical staining, and PCR.

Results

IL-7 was found to be produced by chondrocytes treated with fibronectin fragments. Compared with cells isolated from normal young adult human articular cartilage, increased IL-7 production was noted in cells isolated from older adult tissue donors and from osteoarthritic cartilage. Chondrocyte IL-7 production was also stimulated by combined treatment with the catabolic cytokines IL-1 and IL-6. Chondrocytes were found to express IL-7 receptors and to respond to IL-7 stimulation with increased production of matrix metalloproteinase-13 and with proteoglycan release from cartilage explants.

Conclusion

These novel findings indicate that IL-7 may contribute to cartilage destruction in joint diseases, including osteoarthritis.  相似文献   

6.
Several factors are known to be involved in the destruction of the articular cartilage. Interleukin-1 (IL-1) plays an important role in the pathogenesis of osteoarthritis (OA) either directly or through the stimulation of catabolic factors. The action of IL-1 on articular cartilage is multifaceted and it most likely plays an important role in the mechanism of cartilage destruction. IL-1 suppresses the synthesis of the cartilage matrix components and promotes the degradation of cartilage matrix macromolecules. Diacerein is an anthraquinone molecule that has been shown to reduce the severity of OA, both in man and in animal models. The present study was designed to evaluate in vitro effects of diacerein on IL-1beta expression in LPS or IL-1alpha stimulated chondrocytes. Intracellular IL-1beta production was analysed in articular chondrocytes cultured in monolayer or in alginate 3D-biosystems in the presence of lipopolysaccharide (LPS) or IL-1alpha, with or without diacerein. The results show that LPS and IL-1alpha increase intracellular IL-1beta and Diacerein inhibited LPS-induced and IL-1alpha induced IL-1beta production by articular chondrocytes. Moreover, the effect of mechanical stimulation was analysed. An inhibitory effect of DAR at therapeutic concentrations on IL-1beta production in articular chondrocytes is suggested.  相似文献   

7.
Effects of diacerein on biosynthesis activities of chondrocytes in culture   总被引:1,自引:0,他引:1  
The maintenance of articular cartilage integrity requires a balance between anabolic and catabolic processes which are under the control of chondrocytes. These cells are living in an anaerobic environment and normally do not divide. They are responsible for the continuous maintenance of the cartilage extracellular matrix (ECM). Although multiple factors are involved in the dynamic homeostasis of cartilage, increases in cytokines such as interleukin-1 (IL-1) are associated with a decrease in synthesis and an increase in degradation of the proteoglycans and collagens. Conversely, growth factors such as transforming growth factor-beta (TGF-beta) stimulate chondrocyte synthesis of collagens and proteoglycans, and reduce the activity of IL-1 stimulated metalloproteases, thus opposing the inhibitory and catabolic effects of IL-1. By its capability to reduce IL-1 effects and to stimulate TGF-beta expression in cultured articular chondrocytes, diacerein could favour anabolic processes in the OA cartilage and, hence may contribute to delay the progression of the disease.  相似文献   

8.
9.
10.
11.
12.
Cartilage matrix homeostasis involves a dynamic balance between numerous signals that modulate chondrocyte functions. This study aimed at elucidating the role of the extracellular glucose concentration in modulating anabolic and catabolic gene expression in normal and osteoarthritic (OA) human chondrocytes and its ability to modify the gene expression responses induced by pro-anabolic stimuli, namely Transforming Growth Factor-β (TGF). For this, we analyzed by real time RT-PCR the expression of articular cartilage matrix-specific and non-specific genes, namely collagen types II and I, respectively. The expression of the matrix metalloproteinases (MMPs)-1 and -13, which plays a major role in cartilage degradation in arthritic conditions, and of their tissue inhibitors (TIMP) was also measured. The results showed that exposure to high glucose (30 mM) increased the mRNA levels of both MMPs in OA chondrocytes, whereas in normal ones only MMP-1 increased. Collagen II mRNA was similarly increased in normal and OA chondrocytes, but the increase lasted longer in the later. Exposure to high glucose for 24 h prevented TGF-induced downregulation of MMP-13 gene expression in normal and OA chondrocytes, while the inhibitory effect of TGF on MMP-1 expression was only partially reduced. Other responses were not significantly modified. In conclusion, exposure of human chondrocytes to high glucose, as occurs in vivo in diabetes mellitus patients and in vitro for the production of engineered cartilage, favors the chondrocyte catabolic program. This may promote articular cartilage degradation, facilitating OA development and/or progression, as well as compromise the quality and consequent in vivo efficacy of tissue engineered cartilage.  相似文献   

13.
14.
Regulation of osteogenic proteins by chondrocytes   总被引:9,自引:0,他引:9  
The purpose of this review is to summarize the current scientific knowledge of bone morphogenetic proteins (BMPs) in adult articular cartilage. We specifically focus on adult cartilage, since one of the major potential applications of the members of the BMP family may be a repair of adult tissue after trauma and/or disease. After reviewing cartilage physiology and BMPs, we analyze the data on the role of recombinant BMPs as anabolic agents in tissue formation and restoration in different in vitro and in vivo models following with the endogenous expression of BMPs and factors that regulate their expression. We also discuss recent transgenic modifications of BMP genes and subsequent effect on cartilage matrix synthesis. We found that the most studied BMPs in adult articular cartilage are BMP-7 and BMP-2 as well as transforming growth factor-beta (TGF-beta). There are a number of contradicting reports for some of these growth factors, since different models, animals, doses, time points, culture conditions and devices were used. However, regardless of the experimental conditions, only BMP-7 or osteogenic protein-1 (OP-1) exhibits the most convincing effects. It is the only BMP studied thus far in adult cartilage that demonstrates strong anabolic activity in vitro and in vivo with and without serum. OP-1 stimulates the synthesis of the majority of cartilage extracellular matrix proteins in adult articular chondrocytes derived from different species and of different age. OP-1 counteracts the degenerative effect of numerous catabolic mediators; it is also expressed in adult human, bovine, rabbit and goat articular cartilage. This review reveals the importance of the exploration of the BMPs in the cartilage field and highlights their significance for clinical applications in the treatment of cartilage-related diseases.  相似文献   

15.
16.
We show that proteomic analysis can be applied to study cartilage pathophysiology. Proteins secreted by articular cartilage were analyzed by two-dimensional SDS-PAGE and mass spectrometry. Cartilage explants were cultured in medium containing [35S]methionine/cysteine to radiolabel newly synthesized proteins. To resolve the cartilage proteins by two-dimensional electrophoresis, it was necessary to remove the proteoglycan aggrecan by precipitation with cetylpyridinium chloride. 50-100 radiolabeled protein spots were detected on two-dimensional gels of human cartilage cultures. Of 170 silver-stained proteins identified, 19 were radiolabeled, representing newly synthesized gene products. Most of these were known cartilage constituents. Several nonradiolabeled cartilage proteins were also detected. The secreted protein pattern of explants from 12 osteoarthritic joints (knee, hip, and shoulder) and 14 nonosteoarthritic adult joints were compared. The synthesis of type II collagen was strongly up-regulated in osteoarthritic cartilage. Normal adult cartilage synthesized little or no type II collagen in contrast to infant and juvenile cartilage. Potential regulatory molecules novel to cartilage were identified; pro-inhibin betaA and processed inhibin betaA (which dimerizes to activin A) were produced by all the osteoarthritic samples and half of the normals. Connective tissue growth factor and cytokine-like protein C17 (previously only identified as an mRNA) were also found. Activin induced the tissue inhibitor for metalloproteinases-1 in human chondrocytes. Its expression was induced in isolated chondrocytes by growth factors or interleukin-1. We conclude that type II collagen synthesis in articular cartilage is down-regulated at skeletal maturity and reactivated in osteoarthritis in attempted repair and that activin A may be an anabolic factor in cartilage.  相似文献   

17.
Articular cartilage has distinct histological depth zones. In each zone, chondrocytes are subject to different hydrostatic (HP) and osmotic pressure (OP) due to weight-bearing and joint-loading. Previous in vitro studies of regeneration and pathophysiology in cartilage have failed to consider the characteristics of histological heterogeneity and the effects of combinations of changes in HP and OP. Thus, we have constructed molecular, biochemical, and histological profiles of anabolic and catabolic molecules produced by chondrocytes from each depth zone isolated from bovine articular cartilage in response to changes in HP and OP. We cultured the chondrocytes with combinations of loading or off-loading of HP at 0-0.5 MPa, 0.5 Hz, and changes in OP of 300-450 mosM over 1 wk, and evaluated mRNA expression and immunohistology of both anabolic and catabolic molecules and amounts of accumulated sulfated glycosaminoglycan. Any changes in HP and OP upregulated mRNA of anabolic and catabolic molecules in surface-, middle-, and deep-zone cells, in descending order of magnitude. Off-loading HP maintained the anabolic and reduced the catabolic mRNA; high OP retained upregulation of catabolic mRNA. These molecular profiles were consistent with immunohistological and biochemical findings. Changes in HP and OP are essential for simulating chondrocyte physiology and useful for manipulating phenotypes.  相似文献   

18.
In osteoarthritis (OA), cartilage destruction is associated not only with an imbalance of anabolic and catabolic processes but also with alterations of the cytoskeletal organization in chondrocytes, although their pathogenetic origin is largely unknown so far. Therefore, we have studied possible effects of the proinflammatory cytokine IL-1beta on components of the cytoskeleton in OA chondrocytes on gene expression level. Using a whole genome array, we found that IL-1beta is involved in the regulation of many cytoskeleton-related genes. Apart from well-known cytoskeletal components, the expression and regulation of four genes coding for LIM proteins were shown. These four genes were previously undescribed in the chondrocyte context. Quantitative PCR analysis confirmed significant downregulation of Fhl1, Fhl2, Lasp1, and Pdlim1 as well as Tubb and Vim by IL-1beta. Inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 counteracted the influence of IL-1beta on Fhl2 and Tubb expression, indicating partial involvement of this signaling pathway. Downregulation of the LIM-only protein FHL2 was confirmed additionally on the protein level. In agreement with these results, IL-1beta induced changes in the morphology of chondrocytes, the organization of the cytoskeleton, and the cellular distribution of FHL2. We conclude that L-1beta is involved in the regulation of various cytoskeletal components in human chondrocytes including the multifunctional protein FHL2. This might be relevant for the pathogenesis of OA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号