首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
2.
3.
Several factors are known to be involved in the destruction of the articular cartilage. Interleukin-1 (IL-1) plays an important role in the pathogenesis of osteoarthritis (OA) either directly or through the stimulation of catabolic factors. The action of IL-1 on articular cartilage is multifaceted and it most likely plays an important role in the mechanism of cartilage destruction. IL-1 suppresses the synthesis of the cartilage matrix components and promotes the degradation of cartilage matrix macromolecules. Diacerein is an anthraquinone molecule that has been shown to reduce the severity of OA, both in man and in animal models. The present study was designed to evaluate in vitro effects of diacerein on IL-1beta expression in LPS or IL-1alpha stimulated chondrocytes. Intracellular IL-1beta production was analysed in articular chondrocytes cultured in monolayer or in alginate 3D-biosystems in the presence of lipopolysaccharide (LPS) or IL-1alpha, with or without diacerein. The results show that LPS and IL-1alpha increase intracellular IL-1beta and Diacerein inhibited LPS-induced and IL-1alpha induced IL-1beta production by articular chondrocytes. Moreover, the effect of mechanical stimulation was analysed. An inhibitory effect of DAR at therapeutic concentrations on IL-1beta production in articular chondrocytes is suggested.  相似文献   

4.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPalpha), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPalpha gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPalpha expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPalpha on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

5.
6.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPα), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPα gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPα expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPα on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

7.
Aigner T  McKenna L  Zien A  Fan Z  Gebhard PM  Zimmer R 《Cytokine》2005,31(3):227-240
In order to understand the cellular disease mechanisms of osteoarthritic cartilage degeneration it is of primary importance to understand both the anabolic and the catabolic processes going on in parallel in the diseased tissue. In this study, we have applied cDNA-array technology (Clontech) to study gene expression patterns of primary human normal adult articular chondrocytes isolated from one donor cultured under anabolic (serum) and catabolic (IL-1beta) conditions. Significant differences between the different in vitro cultures tested were detected. Overall, serum and IL-1beta significantly altered gene expression levels of 102 and 79 genes, respectively. IL-1beta stimulated the matrix metalloproteinases-1, -3, and -13 as well as members of its intracellular signaling cascade, whereas serum increased the expression of many cartilage matrix genes. Comparative gene expression analysis with previously published in vivo data (normal and osteoarthritic cartilage) showed significant differences of all in vitro stimulations compared to the changes detected in osteoarthritic cartilage in vivo. This investigation allowed us to characterize gene expression profiles of two classical anabolic and catabolic stimuli of human adult articular chondrocytes in vitro. No in vitro model appeared to be adequate to study overall gene expression alterations in osteoarthritic cartilage. Serum stimulated in vitro cultures largely reflected the results that were only consistent with the anabolic activation seen in osteoarthritic chondrocytes. In contrast, IL-1beta did not appear to be a good model for mimicking catabolic gene alterations in degenerating chondrocytes.  相似文献   

8.
Anabolic and catabolic cytokines and growth factors such as BMP-7 and IL-1beta play a central role in controlling the balance between degradation and repair of normal and (osteo)arthritic articular cartilage matrix. In this report, we investigated the response of articular chondrocytes to these factors IL-1beta and BMP-7 in terms of changes in gene expression levels. Large scale analysis was performed on primary human adult articular chondrocytes isolated from two human, independent donors cultured in alginate beads (non-stimulated and stimulated with IL-1beta and BMP-7 for 48 h) using Affymetrix gene chips (oligo-arrays). Biostatistical and bioinformatic evaluation of gene expression pattern was performed using the Resolver software (Rosetta). Part of the results were confirmed using real-time PCR. IL-1beta modulated significantly 909 out of 3459 genes detectable, whereas BMP-7 influenced only 36 out of 3440. BMP-7 induced mainly anabolic activation of chondrocytes including classical target genes such as collagen type II and aggrecan, while IL-1beta, both, significantly modulated the gene expression levels of numerous genes; namely, IL-1beta down-regulated the expression of anabolic genes and induced catabolic genes and mediators. Our data indicate that BMP-7 has only a limited effect on differentiated cells, whereas IL-1beta causes a dramatic change in gene expression pattern, i.e. induced or repressed much more genes. This presumably reflects the fact that BMP-7 signaling is effected via one pathway only (i.e. Smad-pathway) whereas IL-1beta is able to signal via a broad variety of intracellular signaling cascades involving the JNK, p38, NFkB and Erk pathways and even influencing BMP signaling.  相似文献   

9.
We have previously shown that green tea polyphenols inhibit the onset and severity of collagen II-induced arthritis in mice. In the present study, we report the pharmacological effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), on interleukin-1 beta (IL-1 beta)-induced expression and activity of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in human chondrocytes derived from osteoarthritis (OA) cartilage. Stimulation of human chondrocytes with IL-1 beta (5 ng/ml) for 24 h resulted in significantly enhanced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) when compared to untreated controls (p <.001). Pretreament of human chondrocytes with EGCG showed a dose-dependent inhibition in the production of NO and PGE(2) by 48% and 24%, respectively, and correlated with the inhibition of iNOS and COX-2 activities (p <.005). In addition, IL-1 beta-induced expression of iNOS and COX-2 was also markedly inhibited in human chondrocytes pretreated with EGCG (p <.001). Parallel to these findings, EGCG also inhibited the IL-1 beta-induced LDH release in chondrocytes cultures. Overall, the study suggests that EGCG affords protection against IL-1 beta-induced production of catabolic mediators NO and PGE(2) in human chondrocytes by regulating the expression and catalytic activity of their respective enzymes. Furthermore, our results also indicate that ECGC may be of potential therapeutic value for inhibiting cartilage resorption in arthritic joints.  相似文献   

10.
Injury to cartilage is a recognized sequela of neutrophil activation in arthritic joints. This study examined the possibility that chondrocytes may play a direct role in intraarticular neutrophil activation. We demonstrate that IL-1 beta-stimulated primary and subcultured human articular chondrocytes, express the gene for the potent neutrophil chemotactic and activating cytokine, IL-8. Expression of IL-8 mRNA is also inducible by TNF-alpha and LPS and, to a lesser degree, by the chondrocyte growth factor, transforming growth factor-beta, but not by platelet-derived growth factor, acidic and basic fibroblast growth factor, or epidermal growth factor. Analysis of IL-1 beta-stimulated cartilage organ cultures by in situ hybridization demonstrates that chondrocytes in all zones of cartilage are rapidly induced to express the IL-8 gene in high copy number. Metabolically labeled IL-1 beta-stimulated chondrocytes synthesize IL-8 de novo, which comigrates on SDS-PAGE with IL-8 produced by synovial fibroblasts. Furthermore, the conditioned media of IL-1 beta-stimulated chondrocytes and cartilage organ cultures contain neutrophil chemotactic activity which is completely neutralized by a specific antibody to IL-8, establishing that a bioactive form of IL-8 is the major secreted neutrophil chemotactic factor. By using a specific RIA, we demonstrate that not only IL-1 beta, but also TNF-alpha and LPS can induce abundant IL-8 secretion from chondrocytes. In conclusion, articular chondrocytes are readily inducible to express the IL-8 gene and secrete biologically active IL-8 which can promote neutrophil-mediated inflammation and cartilage destruction.  相似文献   

11.
12.
Tonon R  D'Andrea P 《Biorheology》2002,39(1-2):153-160
Cell-to-cell interactions and gap junctions-dependent communication are crucially involved in chondrogenic differentiation, while in adult articular cartilage direct intercellular communication occurs mainly among chondrocytes facing the outer cartilage layer. Chondrocytes extracted from adult articular cartilage and grown in primary culture express connexin 43 and form functional gap junctions capable of sustaining the propagation of intercellular Ca2+ waves. Degradation of articular cartilage is a characteristic feature of arthritic diseases and is associated to increased levels of interleukin-1 (IL-1) in the synovial fluid. We have examined the effects of IL-1 on gap junctional communication in cultured rabbit articular chondrocytes. Incubation with IL-1 potentiated the transmission of intercellular Ca2+ waves and the intercellular transfer of Lucifer yellow. The stimulatory effect was accompanied by a dose-dependent increase in the expression of connexin 43 and by an enhanced connexin 43 immunostaining at sites of cell-to-cell contact. IL-1 stimulation induced a dose-dependent increase of cytosolic Ca2+ and activates protein tyrosine phosphorylation. IL-1-dependent up-regulation of connexin 43 could be prevented by intracellular Ca2+ chelation, but not by inhibitors of protein tyrosine kinases, suggesting a crucial role of cytosolic Ca2+ in regulating the expression of connexin 43. IL-1 is one of the most potent cytokines that promotes cartilage catabolism: its modulation of intercellular communication represents a novel mechanism by which proinflammatory mediators regulate the activity of cartilage cells.  相似文献   

13.
14.
15.
Human recombinant IL-1beta and TNFalpha have been previously used to induce a cytokine response in canine chondrocytes. In order to establish this functional relation in a homologous system in vitro, we have developed both 2D and 3D models of inflammatory arthritis using canine recombinant cytokines in canine articular chondrocytes. IL-1beta and TNFalpha were cloned and subsequently expressed in Escherichia coli. The purified recombinant canine cytokines were used to simulate inflammation in vitro and the expression of typical inflammation markers such as proinflammatory cytokines (IL-1beta, IL-6, IL-8, GM-CSF and TNFalpha), enzyme mediators (MMP-3 MMP-13, iNOS, COX-2) and their catabolites (NO, PGE(2)) was measured. High expression of proinflammatory cytokines, enzyme mediators and their catabolites was only observed in IL-1beta/TNFalpha stimulated cells. We conclude that the canine IL-1beta and TNFalpha generated in this study are biologically active and equally effective in the canine cell culture systems. Inducing an inflammatory pathway by canine exogenous cytokines in canine chondrocytes provides a useful tool for the study of canine inflammatory arthritis.  相似文献   

16.
Fan Z  Bau B  Yang H  Aigner T 《Cytokine》2004,28(1):17-24
Interleukin-1 (IL-1) is an important catabolic cytokine in rheumatoid and osteoarthritic joint disease. Besides inducing a catabolic response in articular chondrocytes it also strongly induces synergistic mediators such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The molecular basis of this is so far hardly understood. The aim of our study was to evaluate in vitro and in vivo whether IL-6 and LIF are differentially expressed in normal human and osteoarthritic adult articular chondrocytes and to investigate the potential intracellular signaling pathways of IL-1 involved in these gene regulation events. IL-6 and LIF mRNA expressions were found only at low levels in normal adult articular cartilage. Neither IL-6 nor LIF was strongly over-expressed in osteoarthritic cartilage degeneration. Clearly, both IL-6 and LIF can be very efficiently induced by IL-1beta in articular chondrocytes in vitro. However, this induction was somewhat less in osteoarthritic cells, which were overall activated in terms of expression of both cytokines without stimulation. Experiments using pathway selective inhibitors showed that intracellular signaling of IL-1beta for IL-6 and LIF is mediated by a mixture of the IL-1 signaling cascades. However, the ERK-pathway appeared to be particularly important and might be, therefore, of particular potential if one intends to block induction of these molecules by IL-1 in arthritic joint disease.  相似文献   

17.
UDP-galactose-4-epimerase (GALE) is a key enzyme catalyzing the interconversion of UDP-glucose and UDP-galactose, as well as UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine, which are all precursors for the proteoglycans (PGs) synthesis. However, whether GALE is essential in cartilage homeostasis remains unknown. Therefore, we investigated the role of GALE in PGs synthesis of human articular chondrocytes, the GALE expression in OA, and the regulation of GALE expression by interleukin-1beta (IL-1β). Silencing GALE gene with specific siRNAs resulted in a markedly inhibition of PGs synthesis in human articular chondrocytes. GALE protein levels were also decreased in both human and rat OA cartilage, thus leading to losses of PGs contents. Moreover, GALE mRNA expression was stimulated by IL-1β in early phase, but suppressed in late phase, while the suppression of GALE expression induced by IL-1β was mainly mediated by stress-activated protein kinase/c-Jun N-terminal kinase pathway. These data indicated a critical role of GALE in maintaining cartilage homeostasis, and suggested that GALE inhibition might contribute to OA progress.  相似文献   

18.
Articular cartilage is an avascular, non-insulin-sensitive tissue that utilizes glucose as the main energy source, a precursor for glycosaminoglycan synthesis, and a regulator of gene expression. Facilitated glucose transport represents the first rate-limiting step in glucose metabolism. Previously, we demonstrated that glucose transport in chondrocytes is regulated by proinflammatory cytokines via upregulation of GLUT mRNA and protein expression. The objective of the present study was to determine differences in molecular mechanisms regulating glucose transport in chondrocytes stimulated with the anabolic transforming growth factor-beta1 (TGF-beta1) vs. the catabolic and proinflammatory cytokine IL-1beta. Both TGF-beta1 and IL-1beta accelerate glucose transport in chondrocytes. Although both IL-1beta and TGF-beta1 enhance glucose transport in chondrocytes to a similar magnitude, IL-1beta induces significantly higher levels of lactate. TGF-beta1-stimulated glucose transport is not associated with increased expression or membrane incorporation of GLUT1, -3, -6, -8, and -10 and depends on PKC and ERK activation. In contrast, IL-1beta-stimulated glucose transport is accompanied by increased expression and membrane incorporation of GLUT1 and -6 and depends upon activation of PKC and p38 MAP kinase. In conclusion, anabolic and catabolic stimuli regulate facilitated glucose transport in human articular chondrocytes via different effector and signaling mechanisms, and they have distinct effects on glycolysis.  相似文献   

19.
Acute gouty arthritis results from monosodium urate (MSU) crystal deposition in joint tissues. Deposited MSU crystals induce an acute inflammatory response which leads to damage of joint tissue. Pycnogenol (PYC), an extract from the bark of Pinus maritime, has documented antiinflammatory and antioxidant properties. The present study aimed to investigate whether PYC had protective effects on MSU-induced inflammatory and nitrosative stress in joint tissues both in vitro and in vivo. MSU crystals upregulated cyclooxygenase 2 (COX-2), interleukin 8 (IL-8) and inducible nitric oxide synthase (iNOS) gene expression in human articular chondrocytes, but only COX-2 and IL-8 in synovial fibroblasts. PYC inhibited the up-regulation of COX-2, and IL-8 in both articular chondrocytes and synovial fibroblasts. PYC attenuated MSU crystal induced iNOS gene expression and NO production in chondrocytes. Activation of NF-κB and SAPK/JNK, ERK1/2 and p38 MAP kinases by MSU crystals in articular chondrocytes and synovial fibroblasts in vitro was attenuated by treatment with PYC. The acute inflammatory cell infiltration and increased expression of COX-2 and iNOS in synovial tissue and articular cartilage following intra-articular injection of MSU crystals in a rat model was inhibited by coadministration of PYC. Collectively, this study demonstrates that PYC may be of value in treatment of MSU crystal-induced arthritis through its anti-inflammatory and anti-nitrosative activities.  相似文献   

20.
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号