首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference   总被引:22,自引:0,他引:22  
Xiao H  Wang Y  Liu D  Wang W  Li X  Zhao X  Xu J  Zhai W  Zhu L 《Plant molecular biology》2003,52(5):957-966
  相似文献   

3.
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice   总被引:21,自引:0,他引:21  
We analyzed recessive mutants of two homeotic genes in rice, SUPERWOMAN1 (SPW1) and DROOPING LEAF (DL). The homeotic mutation spw1 transforms stamens and lodicules into carpels and palea-like organs, respectively. Two spw1 alleles, spw1-1 and spw1-2, show the same floral phenotype and did not affect vegetative development. We show that SPW1 is a rice APETALA3 homolog, OsMADS16. In contrast, two strong alleles of the dl locus, drooping leaf-superman1 (dl-sup1) and drooping leaf-superman2 (dl-sup2), cause the complete transformation of the gynoecium into stamens. In these strong mutants, many ectopic stamens are formed in the region where the gynoecium is produced in the wild-type flower and they are arranged in a non-whorled, alternate pattern. The intermediate allele dl-1 (T65), results in an increase in the number of stamens and stigmas, and carpels occasionally show staminoid characteristics. In the weakest mutant, dl-2, most of the flowers are normal. All four dl alleles cause midrib-less drooping leaves. The flower of the double mutant, spw1 dl-sup, produces incompletely differentiated organs indefinitely after palea-like organs are produced in the position where lodicules are formed in the wild-type flower. These incompletely differentiated organs are neither stamens nor carpels, but have partial floral identity. Based on genetic and molecular results, we postulate a model of stamen and carpel specification in rice, with DL as a novel gene controlling carpel identity and acting mutually and antagonistically to the class B gene, SPW1.  相似文献   

4.
水稻畸形颖壳突变体ah是双胚苗品系W2555中自然突变产生的。该突变体的内外稃畸形,退化;雄蕊雌蕊化,雌蕊败育;浆片同源转化为类内外稃的结构,推测该突变体可能影响B功能基因的正常发育。与野生型相比,突变体的小穗分支稀疏,每级枝梗上颖花数目减少,一般为4~6朵;小穗顶端的颖花经常不能成熟,表现为颖花始终泛白,不能转绿,因此该突变也影响花序分生组织的发育。进一步的研究证明,该突变体的发育受外界环境的影响。突变性状的遗传分析表明,该突变体由单隐性基因控制。  相似文献   

5.
The C-class MADS box gene AGAMOUS (AG) plays crucial roles in Arabidopsis thaliana development by regulating the organ identity of stamens and carpels, the repression of A-class genes, and floral meristem determinacy. To examine the conservation and diversification of C-class gene function in monocots, we analyzed two C-class genes in rice (Oryza sativa), OSMADS3 and OSMADS58, which may have arisen by gene duplication before divergence of rice and maize (Zea mays). A knockout line of OSMADS3, in which the gene is disrupted by T-DNA insertion, shows homeotic transformation of stamens into lodicules and ectopic development of lodicules in the second whorl near the palea where lodicules do not form in the wild type but carpels develop almost normally. By contrast, RNA-silenced lines of OSMADS58 develop astonishing flowers that reiterate a set of floral organs, including lodicules, stamens, and carpel-like organs, suggesting that determinacy of the floral meristem is severely affected. These results suggest that the two C-class genes have been partially subfunctionalized during rice evolution (i.e., the functions regulated by AG have been partially partitioned into two paralogous genes, OSMADS3 and OSMADS58, which were produced by a recent gene duplication event in plant evolution).  相似文献   

6.
7.
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull‐like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1‐green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.  相似文献   

8.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

9.
10.
To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is necessary for the proper development of stamens and carpels and the prevention of indeterminate growth of the floral meristem. Early in flower development, TAG1 RNA accumulates uniformly in the cells fated to differentiate into stamens and carpels and later becomes restricted to specific cell types within these organs. Transgenic plants that express TAG1 antisense RNA display homeotic conversion of third whorl stamens into petaloid organs and the replacement of fourth whorl carpels with pseudocarpels bearing indeterminate floral meristems with nested perianth flowers. A complementary phenotype was observed in transgenic plants expressing the TAG1 sense RNA in that first whorl sepals were converted into mature pericarpic leaves and sterile stamens replaced the second whorl petals.  相似文献   

11.
superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice   总被引:1,自引:0,他引:1  
Cleistogamy is an efficient strategy for preventing gene flow from genetically modified (GM) crops. We identified a cleistogamous mutant of rice harbouring a missense mutation (the 45th residue isoleucine to threonine; I45T) in the class-B MADS-box gene SUPERWOMAN1 ( SPW1 ), which specifies the identities of lodicules (equivalent to petals) and stamens. In the mutant, spw1-cls , the stamens are normal, but the lodicules are transformed homeotically to lodicule–glume mosaic organs, thereby engendering cleistogamy. Since this mutation does not affect other agronomic traits, it can be used in crosses to produce transgenic lines that do not cause environmental perturbation. Molecular analysis revealed that the reduced heterodimerization ability of SPW1I45T with its counterpart class-B proteins OsMADS2 and OsMADS4 caused altered lodicule identity. spw1-cls is the first useful mutant for practical gene containment in GM rice. Cleistogamy is possible in many cereals by engineering class-B floral homeotic genes and thereby inducing lodicule identity changes.  相似文献   

12.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

13.
14.
以人工栽培的秦岭石蝴蝶为实验材料,通过观察并记录花器官形态和数目的变化,初步探讨秦岭石蝴蝶花器变异规律,并分析了导致其变异的诱因。结果显示:(1)在观察的1 996朵秦岭石蝴蝶花朵中,发现了17种花冠变异类型、5种萼片变异类型和7种可育雄蕊变异类型,总变异率分别为34.57%、38.38%和32.67%。(2)秦岭石蝴蝶花梗或可分支,花梗苞片数目2~3枚。(3)相关性分析结果表明,下唇数目与可育雄蕊数目呈正相关,相关系数为0.927 4,而上唇数目与可育雄蕊数目呈负相关,相关系数为-0.481 1,结合花型图示分析这可能与秦岭石蝴蝶雄蕊着生于花冠下唇内侧近基部有关。该研究统计的秦岭石蝴蝶变异类型丰富,可能对于今后秦岭石蝴蝶的系统进化、花器官发育、生殖生态以及分子遗传方面研究奠定了基础,也为培育不同观赏价值的品种提供思路。  相似文献   

15.
The flower of Kingdonia has a terminal position, thus the rhizome is sympodial. The floral organs initiate in spiral phyllotaxis. The androecium is centripetal in initiation but the sterile stamens are retarded in development compared with the fertile ones. The apex of the young carpel does not participate in the conduplication. The floral organs have single vascular traces and unilacunar nodes.The study was supported by the National Nature Science Foundation of China (No. 30370095 and 30130030).  相似文献   

16.
srs-1, a new floral organ identity gene in rice, was mapped using RAPD and RFLP markers. Firstly, the cross was made between "ZhaiYeQing 8" (ZYQ8, indica) and split rice spikelet (SRS, japonica) mutant. The ratio of wild-type individuals and mutant plants in F2 population is 3:1, which indicates that the mutant characteristics are controlled by single recessive gene, srs-1. Consequently, BSA method was adopted and 520 random 10-mer primers were used to screen polymorphic bands between two bulks. Six primers could amplify polymorphic bands, of which S465 generates the most stable RAPD patterns. Then, S465 that cosegregates in F2 population has been converted into an RFLP marker successfully. Furthermore, srs-1 gene was mapped on chromosome 3 using DH mapping population. The effect of srs-1 gene results in the mutant of split rice spikelet. The mutant has longer and softer palea/lemma than those of wild-type, and two small palea/lemma-like organs between palea and lemma. In addition, there is a flower with three stamens and carpel in the axil of lemma. Thus, there are nine stamens and two carpels in the spikelet of mutant. srs-1 gene may belong to homeotic gene of class A according to the mutant characteristics and ABC model.  相似文献   

17.
The characterisation of the single flower truss ( sft) mutant phenotype of tomato ( Lycopersicon esculentum Mill.), as well as its genetic interactions with other mutations affecting FALSIFLORA ( FA) and SELF PRUNING ( SP) genes, has revealed that SFT is a key gene in the control of floral transition and floral meristem identity. The single sft mutation produces a late-flowering phenotype in both long-day and short-day conditions. In combination with fa, a mutation affecting the tomato gene orthologous to LFY, sft completely blocks the transition to flowering in this species. Thus, the phenotype of the sft fa double mutants indicates that SFT and FA participate in two parallel pathways that regulate the switch from vegetative to reproductive phase in tomato, and that both genes are indispensable for flowering. On the other hand, the replacement of flowers by vegetative shoots observed in the sft inflorescence suggests that SFT regulates flower meristem identity during inflorescence development of tomato. In addition to these two main functions, SFT is involved in the development of both flowers and sympodial shoots of tomato. First, the mutation produces a partial conversion of sepals into leaves in the first floral whorl, and a reduction in the number of floral organs, particularly carpels. Secondly, the sympodial development in the mutant plants is altered, which can be related to the interaction between SFT and SP, a gene controlling the number of nodes in sympodial shoots. In fact, we have found that the sft phenotype is epistatic to that of sp, and that the level of SP mRNA in the apical buds of sft around flowering is reduced. SFT can therefore co-ordinate the regulation of two simultaneous developmental processes in the tomato apical shoot, the promotion of flowering in one sympodial segment and the vegetative development of the next segment.  相似文献   

18.
19.
Liu W  Fu Y  Hu G  Si H  Zhu L  Wu C  Sun Z 《Planta》2007,226(3):785-795
A thermo-sensitive chlorophyll deficient mutant was isolated from more than 15,000 transgenic rice lines. The mutant displayed normal phenotype at 23°C or lower temperature (permissive temperature). However, when grown at 26°C or higher (nonpermissive temperature) the plant exhibited an abnormal phenotype characterized by yellow green leaves. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, which is tentatively designed as cde1(t) (chlorophyll deficient 1, temporally). PCR analysis and hygromycin resistance assay indicated the mutation was not caused by T-DNA insertion. To isolate the cde1(t) gene, a map-based cloning strategy was employed and 15 new markers (five SSR and ten InDels markers) were developed. A high-resolution physical map of the chromosomal region around the cde1(t) gene was made using F2 and F3 population consisting of 1,858 mutant individuals. Finally, the cde1(t) gene was mapped in 7.5 kb region between marker ID10 and marker ID11 on chromosome 2. Sequence analysis revealed only one candidate gene, OsGluRS, in the 7.5 kb region. Cloning and sequencing of the target region from the cde1(t) mutant showed that a missense mutation occurred in the mutant. So the OsGluRS gene (TIGR locus Os02 g02860) which encode glutamyl-tRNA synthetase was identified as the Cde1(t) gene.  相似文献   

20.
为明确自然状态下青秆竹(Bambusa tuldoides)不同发育阶段花器官的形态以及雌雄配子体的发育状态,总结其败育类型,该文通过采用解剖和切片等方法对青秆竹花器官的各部分外观形态以及雌雄配子体的发育过程进行观察,并分析其结实率低下的原因。结果表明:(1)青秆竹小穗为无限花序,下部的小花先发育,但基部具有潜伏芽,因此又具有有限花序的特征;小穗柄不发达,簇生花枝节部。(2)每朵小花拥有内、外稃各1枚,花药6枚,浆片3枚,雌蕊1枚;浆片透明,边缘具有发达的纤毛;子房具棱,子房上部具绒毛,子房1室,侧膜胎座,倒生胚珠,三分枝羽状柱头。(3)青秆竹花药具有4个药室,花药壁由表皮、药室内壁、中层、绒毡层4层结构组成;绒毡层为腺质型,花药发育后期极度退化;小孢子母细胞分裂类型为连续型,产生两边对称型小孢子,花粉粒细胞成熟后为3核。(4)雄蕊和雌蕊出现多种败育类型,可能是导致结实率低的主要原因。综上结果表明,青秆竹花器官的形态结构发育正常,而雌雄配子体发育过程中出现异常,造成了其结实率低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号