首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Apoptosis is now widely recognized as an important part of chronic obstructive pulmonary disease (COPD) pathogenesis. Our previous study demonstrated that a prostacyclin (PGI2) analogue (beraprost sodium, BPS) prevented cigarette smoke extract (CSE) induced apoptosis of the pulmonary endothelium in rats. So we determined to clarify the apoptosis of vascular endothelial cells in COPD patient and the role of prostacyclin in the protection against apoptosis in vascular endothelial cells induced by CSE. Surgical specimens were obtained from 12 patients with COPD and 10 controls, and the level of apoptosis, prostacyclin synthase (PGI2S) expression and 6-keto-PGF1α (a stable metabolite of PGI2) were detected. The apoptotic index (AI), caspase-3 activity, expression of caspase-3 and 6-keto-PGF1α were examined in human umbilical vein endothelial cells (HUVECs) under exposure to varied concentrations of CSE for 24?h as well as under exposure to 2.5?% CSE for varied durations. Then, HUVECs under 2.5?% CSE were exposed to varied concentrations of BPS for 24?h and observed the alteration and the level of cAMP. Increased AI, decreased expression of PGI2S and 6-keto-PGF1α, were found in the lungs of patients with COPD compared with controls. Moreover, CSE induced apoptosis in means of both dose-dependent and time-dependent manners, and reduced the level of 6-keto-PGF1α in HUVECs. And with the treatment of BPS, an enhanced level of cAMP and decreased apoptosis were detected. The deficiency of PGI2 critically contributes to the COPD-associated endothelial dysfunction and apoptosis. And BPS protects against the apoptosis in the vascular endothelial cells induced by CSE.  相似文献   

2.
Inflammation involves in many cigarette smoke (CS) related diseases including the chronic obstructive pulmonary disease (COPD). Lung epithelial cell released IL-8 plays a crucial role in CS induced lung inflammation. CS and cigarette smoke extracts (CSE) both induce IL-8 secretion and subsequently, IL-8 recruits inflammatory cells into the lung parenchyma. However, the molecular and cellular mechanisms by which CSE triggers IL-8 release remain not completely understood. In this study, we identified a novel extracellular matrix (ECM) molecule, CCN1, which mediated CSE induced IL-8 secretion by lung epithelial cells. We first found that CS and CSE up-regulated CCN1 expression and secretion in lung epithelial cells in vivo and in vitro. CSE up-regulated CCN1 via induction of reactive oxygen spices (ROS) and endoplasmic reticulum (ER) stress. p38 MAPK and JNK activation were also found to mediate the signal pathways in CSE induced CCN1. CCN1 was secreted into ECM via Golgi and membrane channel receptor aquaporin4. After CSE exposure, elevated ECM CCN1 functioned via an autocrine or paracrine manner. Importantly, CCN1 activated Wnt pathway receptor LRP6, subsequently stimulated Wnt pathway component Dvl2 and triggered beta-catenin translocation from cell membrane to cytosol and nucleus. Treatment of Wnt pathway inhibitor suppressed CCN1 induced IL-8 secretion from lung epithelial cells. Taken together, CSE increased CCN1 expression and secretion in lung epithelial cells via induction of ROS and ER stress. Increased ECM CCN1 resulted in augmented IL-8 release through the activation of Wnt pathway.  相似文献   

3.
Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.  相似文献   

4.
Cigarette-induced endothelial dysfunction could be an early mediator of atherosclerosis. In this study, we explored the mechanisms of cigarette smoke extract (CSE)-induced human aortic endothelial cells (HAEC) apoptosis. We found that 10-65% of HAECs underwent apoptotic changes when HAECs were exposed to 0.001-0.02 cigarette equivalent unit of CSE for 4 h. CSE activated the caspases-3 and 8, the p38 MAP kinase and stress activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK). Specific inhibitors of p38 MAP or SAPK/JNK reduced CSE-induced caspase activation. We further showed that eNOS pre-activation by L-arginine reduced endothelial apoptosis from 65% to 5%; and eNOS inhibition by N-omega-nitro-L-arginine methyl ester accentuated CSE-induced endothelial apoptosis. We suggest that appropriate endogenous NO production may be an important protective mechanism against smoking-induced endothelial damage.  相似文献   

5.
6.
Angiogenesis, the process of new blood vessels formation, is a critical step for wound healing, tumour growth and metastasis, diabetic retinopathy, psoriasis, etc. The present study was designed to investigate whether c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for regulating basic fibroblastic growth factor (bFGF)-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Our results showed that bFGF-induced HUVECs proliferation, migration and tube formation with a concentration-dependent manner. Further results showed that bFGF induced the phosphorylation of JNK/SAPK at 15 min. Both JNK/SAPK inhibitor SP600125 and JNK/SAPK peptide inhibitor 420116 could inhibit bFGF-induced HUVECs proliferation, migration and tube formation, so did JNK/SAPK-specific siRNA. Moreover, when HUVECs were stimulated with bFGF, upstream signals of JNK/SAPK, SEK1/MKK4 and MKK7 were both activated at 2 min. In summary, our results indicate that JNK/SAPK signal pathway plays an important role in regulating bFGF-mediated angiogenesis in HUVECs, which may therefore be a new therapeutic approach for the treatment of angiogenesis-associated diseases.  相似文献   

7.
Angiogenesis is an integral part of both the pulmonary inflammatory response to chronic exposure to cigarette smoke and the lung tissue remodeling associated with cigarette smoke-induced chronic obstructive pulmonary disease (COPD). To investigate the role of angiogenesis in the pathogenesis of COPD, we evaluated the effect of cigarette smoke extract (CSE) on angiogenesis of pulmonary artery endothelial cells (PAEC). Incubation of PAEC with 2.5-10% CSE resulted in a dose-dependent inhibition of endothelial monolayer wound repair. CSE also caused inhibition of tube formation on Matrigel, migration in a Boyden chamber, and proliferation of PAEC. Because calpain, a family of calcium-dependent intracellular proteases, mediates cytoskeletal signaling in endothelial motility, we explored the role of calpain in the CSE-induced inhibition of endothelial angiogenesis. Incubation of CSE resulted in a dose-dependent decrease in calpain activity. Calpain inhibitor-1, a specific inhibitor of calpain, potentiates inhibitory effect of CSE on the endothelial monolayer wound repair, tube formation, cell migration, and cell proliferation. Transfection of PAEC with antisense oligodeoxyribonucleotides of calpastatin, the major endogenous calpain inhibitor, prevented CSE-induced increase in calpastatin protein content and CSE-induced decreases in calpain activity. It also prevented CSE-induced decreases in monolayer wound repair, tube formation, and migration. These results suggest that CSE attenuates angiogenesis of PAEC and the mechanism involves inhibition of calpain. Impaired angiogenesis may impede the repair process in the lungs of cigarette smokers and contribute to the altered structural remodeling observed in the lungs of patients with cigarette smoke-related COPD.  相似文献   

8.
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and abnormal inflammatory response. Wnt/β‐catenin and AMP‐activated protein kinase (AMPK) have been shown to modulate lung inflammatory responses and injury. However, it remains elusive whether Wnt/β‐catenin and AMPK modulate nuclear factor erythroid‐2 related factor‐2 (Nrf2)‐mediated protective responses during the development of emphysema. Here we showed that treatment with a Wnt pathway activator (LiCl) reduced elastase‐induced airspace enlargement and cigarette smoke extract (CSE)‐induced lung inflammatory responses in WT mice, which was associated with increased activation of Nrf2 pathway. Interestingly, these effects of LiCl were not observed in Nrf2?/? mice exposed to elastase. In normal human bronchial epithelial (NHBE) cells, Wnt3a overexpression up‐regulated, whereas Wnt3a knockdown further down‐regulated the levels of Nrf2 and its target proteins heme oxygenase‐1 (HO‐1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) by CSE treatment. In contrast, Nrf2 deficiency did not have any effects on Wnt/β‐catenin pathway in mouse lungs and NHBE cells. Both elastase and CSE exposures reduced AMPK phosphorylation. A specific AMPK activator metformin increased Wnt3a, β‐catenin, Nrf2 phosphorylation and activation but reduced the levels of IL‐6 and IL‐8 in NHBE cells and mouse lungs exposed to CSE. Furthermore, Nrf2 deficiency abolished the protection of metformin against CSE‐induced increase in IL‐6 and IL‐8 in NHBE cells. In conclusion, Nrf2 mediates the protective effects of both Wnt3a/β‐catenin and AMPK on lung inflammatory responses during the development of COPD/emphysema. These findings provide potential therapeutic targets for the intervention of COPD/emphysema.  相似文献   

9.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

10.
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial injury plays crucial roles in the development of arteriosclerosis (AS). Golgi apparatus (GA) fragmentation is involved in various pathological processes, including endothelial injury. However, the role of GA fragmentation in ox-LDL-induced endothelial injury has not been determined. In this study, human umbilical vein endothelial cells (HUVECs) subjected to ox-LDL were used as an in vitro AS model. Herein, we showed that ox-LDL restrained proliferation and induced apoptosis and GA fragmentation of HUVECs. Moreover, overexpression of GRASP65 significantly prevented ox-LDL-induced GA fragmentation and endothelial cell injury by enhancing cell viability, nitric oxide production, and endothelial NOS expression and reducing apoptosis. Mechanistically, ox-LDL resulted in the activation of the extracellular signal-regulated kinase (ERK) pathway in HUVECs. Inactivation of the ERK pathway by U0126 suppressed the phosphorylation of GRASP65, GA fragmentation, and endothelial cell injury induced by ox-LDL. In conclusion, ox-LDL triggers GA fragmentation in HUVECs via activating the ERK signaling pathway, which participates in endothelial injury during the development of AS.  相似文献   

11.
Cigarette smoke-induced release of pro-inflammatory cytokines including interleukin-8 (IL-8) from inflammatory as well as structural cells in the airways, including airway smooth muscle (ASM) cells, may contribute to the development of chronic obstructive pulmonary disease (COPD). Despite the wide use of pharmacological treatment aimed at increasing intracellular levels of the endogenous suppressor cyclic AMP (cAMP), little is known about its exact mechanism of action. We report here that next to the β(2)-agonist fenoterol, direct and specific activation of either exchange protein directly activated by cAMP (Epac) or protein kinase A (PKA) reduced cigarette smoke extract (CSE)-induced IL-8 mRNA expression and protein release by human ASM cells. CSE-induced IκBα-degradation and p65 nuclear translocation, processes that were primarily reversed by Epac activation. Further, CSE increased extracellular signal-regulated kinase (ERK) phosphorylation, which was selectively reduced by PKA activation. CSE decreased Epac1 expression, but did not affect Epac2 and PKA expression. Importantly, Epac1 expression was also reduced in lung tissue from COPD patients. In conclusion, Epac and PKA decrease CSE-induced IL-8 release by human ASM cells via inhibition of NF-κB and ERK, respectively, pointing at these cAMP effectors as potential targets for anti-inflammatory therapy in COPD. However, cigarette smoke exposure may reduce anti-inflammatory effects of cAMP elevating agents via down-regulation of Epac1.  相似文献   

12.
Sestrin-2 (SESN2) is involved in the cellular response to different stress conditions. However, the function of SESN2 in the cardiovascular system remains unknown. In the present study, we tested whether SESN2 has a beneficial effect on vascular endothelial damage induced by angiotensin II (AngII). Firstly, we found that AngII induces expression of SESN2 in human umbilical vein endothelial cells (HUVECs) in a time-dependent and dose-dependent manner. We also found that knockdown of SESN2 using small RNA interference promotes cellular toxicity of AngII, as well as a reduction in cell viability, exacerbation of oxidative stress, and stimulation of apoptosis. In addition, our results show that the c-Jun NH (2)-terminal kinase (JNK)/c-Jun pathway is activated by AngII. Inhibiting the activity of the JNK pathway abolishes the increase in SESN2 induced by AngII. Importantly, overexpression of c-Jun promotes luciferase activity of the SESN2 promoter. These findings suggest that the inductive effect of SESN2 is mediated by the JNK/c-Jun pathway. Our results indicate that the induction of SESN2 acts as a compensatory response to AngII for survival, implying that stimulating expression of SESN2 might be an effective pharmacological target for the treatment of AngII-associated cardiovascular diseases.  相似文献   

13.
High mobility group 1 protein (HMGB1), a highly conserved nuclear DNA‐binding protein and inflammatory mediator, has been recently found to be involved in angiogenesis. Our previous study has demonstrated the elevation of HMGB1 in the tissue of perforated disc of temporomandibular joint (TMJ). Here, we investigated a novel mediator of HMGB1 in regulating hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) to mediate angiogenesis in perforated disc cells of TMJ. HMGB1 increased the expression of HIF‐1α and VEGF in a dose‐ and time‐dependent manner in these cells. Moreover, immunofluorescence assay exhibits that the HIF‐1α were activated by HMGB1. In addition, HMGB1 activated extracellular signal‐related kinase 1/2 (Erk1/2), Jun N‐terminal kinase (JNK), but not P38 in these cells. Furthermore, both U0126 (ErK inhibitor) and SP600125 (JNK inhibitor) significantly suppressed the enhanced production of HIF‐1α and VEGF induced by HMGB1. Tube formation of human umbilical vein endothelial cells (HUVECs) was significantly increased by exposure to conditioned medium derived from HMGB1‐stimulated perforated disc cells, while attenuated with pre‐treatment of inhibitors for VEGF, HIF‐1α, Erk and JNK, individually. Therefore, abundance of HMGB1 mediates activation of HIF‐1α in disc cells via Erk and JNK pathway and then, initiates VEGF secretion, thereby leading to disc angiogenesis and accelerating degenerative change of the perforated disc.  相似文献   

14.
Tumor conditioned medium (CM) has been widely used to stimulate endothelial cells to form capillary-like structures in in vitro angiogenesis models. We report herein the effect of HT1080 and A549 CM after they were mixed with microvascular endothelial cells medium-2 (EGM-2) on angiogenesis in human umbilical vein endothelial cells (HUVECs). Both HT1080 and A549 CM decreased HUVEC proliferation, to different extents. While A549 CM significantly increased capillary-like structure formation in a co-culture system, no effect of HT1080 was apparent. Inhibition of p38 mitogen-activated protein kinase (MAPK) blocked both basal and A549 CM induced capillary-like structure formation, but inhibition of extracellular signal-regulated kinases (ERK) and that of c-Jun N-terminal protein kinases (JNK) MAPK had no such effect. Activation of ERK MAPK was inhibited by both CMs, whereas p38 MAPK was inactivated by HT1080 and activated by A549 CM and a control. Neither CM had an effect on JNK MAPK. The results suggest that p38 MAPK played a critical role in capillary-like structure formation in the co-culture, partly via promotion of apoptosis in HUVECs.  相似文献   

15.
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5–120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.  相似文献   

16.
Cigarette smoke-induced airway epithelial cell mitophagy is an important mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mitochondrial protein Nix (also known as BNIP3L) is a selective autophagy receptor and participates in several human diseases. However, little is known about the role of Nix in airway epithelial cell injury during the development of COPD. The aim of the present study is to investigate the effects of Nix on mitophagy and mitochondrial function in airway epithelial cells exposed to cigarette smoke extract (CSE). Our present study has found that CSE could increase Nix protein expression and induce mitophagy in airway epithelial cells. And Nix siRNA significantly inhibited mitophagy and attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. In contrast, Nix overexpression enhanced mitophagy and aggravated mitochondrial dysfunction and cell injury when airway epithelial cells were incubated with 7.5% CSE. These data suggest that Nix-dependent mitophagy promotes airway epithelial cell and mitochondria injury induced by cigarette smoke, and may be involved in the pathogenesis of COPD and other cigarette smoke-associated diseases.  相似文献   

17.
Apelin receptor (APJ) deficiency has been reported to be preventive against atherosclerosis. However, the mechanism of this effect remains unknown. In this study, quantitative real-time RT-PCR, Western blotting and ELISA analyses revealed a significant increase in the expression of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) in human umbilical vein endothelial cells (HUVECs) treated with apelin. Inhibitors of cellular signal transduction molecules were used to demonstrate involvement of nuclear factor kappa-B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways in apelin–APJ-induced activation of adhesion molecules and chemokines. Inhibition of APJ expression by RNA interference abrogated apelin-induced expression of adhesion molecules and chemokines and apelin-stimulated cellular signal transduction in HUVECs. The apelin–APJ system in endothelial cells is involved in the expression of adhesion molecules and chemokines, which are important for the initiation of endothelial inflammation-related atherosclerosis. Therefore, apelin–APJ and the cell signaling pathways activated by this system in endothelial cells may represent targets for therapy of atherosclerosis.  相似文献   

18.
Extracellular high‐mobility group box‐1 (HMGB1) acts as a signalling molecule during inflammation, cell differentiation and angiogenesis. Increased abundance of HMGB1 is associated with several pathological disorders such as cancer, asthma and chronic obstructive pulmonary disease (COPD). In this study, we investigated the relevance of HMGB1 in the pathological remodelling present in patients with idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension (PH) associated with COPD. Remodelled vessels present in COPD with PH and IPAH lung samples were often surrounded by HMGB1‐positive cells. Increased HMGB1 serum levels were detected in both patient populations compared to control samples. The effects of physiological HMGB1 concentrations were then examined on cellular responses in vitro. HMGB1 enhanced proliferation of pulmonary arterial smooth muscle cells (PASMC) and primary human arterial endothelial cells (PAEC). HMGB1 stimulated p38, extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) phosphorylation. Furthermore, activation of the downstream AP‐1 complex proteins c‐Fos and c‐Jun was observed. Silencing of c‐Jun ablated the HMGB1‐induced proliferation in PASMC. Thus, an inflammatory component such as HMGB1 can contribute to PASMC and PAEC proliferation and therefore potentially to vascular remodelling and PH pathogenesis.  相似文献   

19.

Background

Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.

Methods

The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.

Results

In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.

Conclusions

These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.  相似文献   

20.
Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of “immune coagulation” and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号