首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Proper centrosome duplication and spindle formation are crucial for prevention of chromosomal instability, and BRCA1 plays a role in this process. In this study, transient inhibition of BRCA1 function in cell lines derived from mammary tissue caused rapid amplification and fragmentation of centrosomes. Cell lines tested that were derived from nonmammary tissues did not amplify the centrosome number in this transient assay. We tested whether BRCA1 and its binding partner, BARD1, ubiquitinate centrosome proteins. Results showed that centrosome components, including gamma-tubulin, are ubiquitinated by BRCA1/BARD1 in vitro. The in vitro ubiquitination of gamma-tubulin was specific, and function of the carboxy terminus was necessary for this reaction; truncated BRCA1 did not ubiquitinate gamma-tubulin. BRCA1/BARD1 ubiquitinated lysines 48 and 344 of gamma-tubulin in vitro, and expression in cells of gamma-tubulin K48R caused a marked amplification of centrosomes. This result supports the notion that the modification of these lysines in living cells is critical in the maintenance of centrosome number. One of the key problems in understanding the biology of BRCA1 has been the identification of a specific target of BRCA1/BARD1 ubiquitination and its effect on mammary cell biology. The results of this study identify a ubiquitination target and suggest a biological impact important in the etiology of breast cancer.  相似文献   

2.
3.
4.
Monoubiquitination of the FANCD2 protein is a key step in the Fanconi anemia (FA) tumor suppressor pathway, coinciding with this molecule's accumulation at sites of genome damage. Strong circumstantial evidence points to a requirement for the BRCA1 gene product in this step. Here, we show that the purified BRCA1/BARD1 complex, together with E1 and UbcH5a, is sufficient to reconstitute the monoubiquitination of FANCD2 in vitro. Although siRNA-mediated knockdown of BRCA1 in human cells results in defective targeting of FANCD2 to sites of DNA damage, it does not lead to a defect in FANCD2 ubiquitination. Furthermore, ablation of the RING finger domains of either BRCA1 or BARD1 in the chicken B cell line DT40 also leaves FANCD2 modification intact. Consequently, while BRCA1 affects the accumulation of FANCD2 at sites of DNA damage, BRCA1/BARD1 E3 ligase activity is not essential for the monoubiquitination of FANCD2.  相似文献   

5.
6.
7.
The BRCA1-binding RING-finger domain protein BARD1 may act conjointly with BRCA1 in DNA repair and in ubiquitination, but it may also induce apoptosis in a BRCA1-independent manner. In this study, we have investigated BARD1 expression during spermatogenesis. In contrast with BRCA1, which is expressed only in meiotic spermatocytes and early round spermatids, BARD1 is expressed during all stages of spermatogenesis. However, while spermatogonia expressed full-length BARD1 mRNA, later stages of spermatocyte precursors express predominantly a novel, shorter splice form BARD1beta. BARD1beta lacks the BRCA1-interacting RING finger but maintains its proapoptotic activity. Consistently, BRCA1 can counteract the proapoptotic activity of full-length BARD1 but not of BARD1beta. Several lines of evidence suggest that BARD1 is involved in proapoptotic signaling in testis: i) both BARD1 isoforms are mostly found in cells that stain positive for TUNEL, Bax, and activated caspase 3; ii) BARD1beta, capable of inducing apoptosis even in the presence of BRCA1, is specifically expressed in BRCA1-positive later stages of spermatogenesis; iii) antiapoptotic hormonal stimulation leads to BARD1 downregulation; and iv) BARD1 expression is associated with human pathologies causing sterility due to increased germ cell death. Our data suggest that full-length BARD1 might be involved in apoptotic control in spermatogonia and primary spermatocytes, while a switch to the BRCA1-independent BARD1beta might be necessary to induce apoptosis in BRCA1-expressing meiotic spermatocytes and early round spermatids.  相似文献   

8.
Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase   总被引:7,自引:0,他引:7  
The RING finger of BRCA1 confers ubiquitin ligase activity that is markedly enhanced when complexed with another RING-containing protein, BARD1, and is required for the function of this tumor suppressor protein in protecting genomic integrity. Here, we report that co-expression of BRCA1-(1-639) and BARD1 in bacteria can assemble a potent ubiquitin ligase activity. Purified BRCA1-(1-639)*BARD1 stimulated the Ubc5c-mediated monoubiquitination of histone H2A/H2AX in vitro, suggesting a possible role for BRCA1*BARD1 in modifying chromatin structure. Moreover, the truncated BRCA1*BARD1 complex exhibited efficient autoubiquitination activity in vitro capable of assembling non-lysine 48-linked polyubiquitin chains on both BRCA1-(1-639) and BARD1. When co-expressed in cells by transient transfection, the recombinant BRCA1-(1-300).BARD1 complex was found to be associated with polyubiquitin chains, suggesting that BRCA1-(1-300)*BARD1 was ubiquitinated in vivo as well. These results raise the possibility that BRCA1*BARD1 acts to assemble non-lysine 48-linked polyubiquitin chains that may serve as part of a signaling platform required for coordinating DNA repair-related events.  相似文献   

9.
10.
Although the BRCA1 tumor suppressor has been implicated in a number of cellular processes, it plays an especially important role in the DNA damage response as a regulator of cell cycle checkpoints and DNA repair pathways. In vivo, BRCA1 exists as a heterodimer with the BARD1 protein, and many of its biological functions are mediated by the BRCA1-BARD1 complex. Here, we show that BARD1 is phosphorylated in a cell cycle-dependent manner and that the hyperphosphorylated forms of BARD1 predominate during M phase. By mobility shift analysis and mass spectrometry, we have identified seven sites of mitotic phosphorylation within BARD1. All sites exist within either an SP or TP sequence, and two sites resemble the consensus motif recognized by cyclin-dependent kinases. To examine the functional consequences of BARD1 phosphorylation, we used a gene targeting knock-in approach to generate isogenic cell lines that express either wild-type or mutant forms of the BARD1 polypeptide. Analysis of these lines in clonogenic survival assays revealed that cells bearing phosphorylation site mutations are hypersensitive to mitomycin C, a genotoxic agent that induces interstrand DNA cross-links. These results implicate BARD1 phosphorylation in the cellular response to DNA damage.  相似文献   

11.
12.
Rsp5 is an E3 ubiquitin-protein ligase of Saccharomyces cerevisiae that belongs to the hect domain family of E3 proteins. We have previously shown that Rsp5 binds and ubiquitinates the largest subunit of RNA polymerase II, Rpb1, in vitro. We show here that Rpb1 ubiquitination and degradation are induced in vivo by UV irradiation and by the UV-mimetic compound 4-nitroquinoline-1-oxide (4-NQO) and that a functional RSP5 gene product is required for this effect. The 26S proteasome is also required; a mutation of SEN3/RPN2 (sen3-1), which encodes an essential regulatory subunit of the 26S proteasome, partially blocks 4-NQO-induced degradation of Rpb1. These results suggest that Rsp5-mediated ubiquitination and degradation of Rpb1 are components of the response to DNA damage. A human WW domain-containing hect (WW-hect) E3 protein closely related to Rsp5, Rpf1/hNedd4, also binds and ubiquitinates both yeast and human Rpb1 in vitro, suggesting that Rpf1 and/or another WW-hect E3 protein mediates UV-induced degradation of the large subunit of polymerase II in human cells.  相似文献   

13.
BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.  相似文献   

14.
The breast cancer regulatory protein-1 (BRCA1)-associated RING domain 1 (BARD1) gene is mutated in a subset of breast/ovarian cancers. BARD1 functions as a heterodimer with BRCA1 in nuclear DNA repair. BARD1 also has a BRCA1-independent apoptotic activity. Here we investigated the link between cytoplasmic localization and apoptotic function of BARD1. We used immunofluorescence microscopy and deconvolution analysis to resolve BARD1 cytoplasmic staining patterns and detected endogenous BARD1 at mitochondria. BARD1 was also detected in mitochondrial cell fractions by immunoblotting. The targeting of BARD1 to mitochondria was modestly stimulated by DNA damage and did not require BRCA1 as indicated by RNA interference and peptide-competition experiments. Transiently expressed yellow fluorescence protein-BARD1 localized to mitochondria, and the targeting sequences were mapped to both the N and C terminus of BARD1. Ectopic yellow fluorescence protein-BARD1 induced apoptosis and loss of mitochondrial membrane potential in MCF-7 breast tumor cells. BARD1 apoptotic function was associated with stimulation of Bax oligomerization at mitochondria. This distinguishes it from BRCA1, which is pro-apoptotic but did not induce Bax oligomerization. The cancer-associated BARD1 splice-variant DeltaRIN (lacks the BRCA1 binding domain and ankyrin repeats) was recruited to mitochondria but did not stimulate apoptosis or alter membrane permeability. We propose that BARD1 has two main sites of action in its cellular response to DNA damage, the nucleus, where it promotes cell survival through DNA repair, and the mitochondria, where BARD1 regulates apoptosis.  相似文献   

15.
The breast and ovarian cancer predisposition gene product BRCA1, binds to BARD1 at its N terminus. In cells BRCA1 is found as a heterodimer with BARD1 and may represent the functionally active form of BRCA1. Using yeast two-hybrid and split-hybrid screens we have identified 16 independent missense mutations which prevent the ability of the BARD1 N terminus to heterodimerize with BRCA1. With reference to the recent structure of the BARD1center dotBRCA1 RING complex (Brzovic, P. S., Rajagopal, P., Hoyt, D. W., King, M-C., and Klevit, R. E. (2001) Nat. Struct. Biol. 8, 833--837) we note two classes of mutation; those that map to the hydrophobic core forming the BARD1:BRCA1 interface and are substitutions of leucine, and those that map to residues forming intramolecular contacts either in helical packing, or in the conserved zinc chelating cysteine residues of the RING itself. The directed mutation of charged residues predicted to play a role in the interaction could not alone prevent heterodimer formation suggesting that, while polar interactions may participate in the specificity of the interaction, they are not crucial. Together these data provide functional evidence for the requirement of a hydrophobic interface and illustrate that disruption of the tertiary structure by mutations away from the interface itself are able to prevent formation of the heterodimer.  相似文献   

16.
The BRCA1 tumor suppressor exists as a heterodimeric complex with BARD1, and this complex is thought to mediate many of the functions ascribed to BRCA1, including its role in tumor suppression. The two proteins share a common structural organization that features an N-terminal RING domain and two C-terminal BRCT motifs, whereas BARD1 alone also contains three tandem ankyrin repeats. In normal cells, the BRCA1/BARD1 heterodimer is believed to enhance chromosome stability by promoting homology-directed repair (HDR) of double strand DNA breaks. Here we have investigated the structural requirements for BARD1 in this process by complementation of Bard1-null mouse mammary carcinoma cells. Our results demonstrate that the ankyrin and BRCT motifs of BARD1 are each essential for both chromosome stability and HDR. Tandem BRCT motifs, including those found at the C terminus of BARD1, are known to form a phosphoprotein recognition module. Nonetheless, the HDR function of BARD1 was not perturbed by synthetic mutations predicted to ablate the phospho-recognition activity of its BRCT sequences, suggesting that some functions of the BRCT domains are not dependent on their ability to bind phosphorylated ligands. Also, cancer-associated missense mutations in the BRCT domains of BARD1 (e.g. C557S, Q564H, V695L, and S761N) have been observed in patients with breast, ovarian, and endometrial tumors. However, none of these was found to affect the HDR activity of BARD1, suggesting that any increased cancer risk conferred by these mutations is not because of defects in this repair mechanism.  相似文献   

17.
BRCA1 is involved in maintaining genomic integrity and, as a regulator of the G2/M checkpoint, contributes to DNA repair and cell survival. The overexpression of BRCA1 elicits diverse cellular responses including apoptosis due to the stimulation of specific signaling pathways. BRCA1 is normally regulated by protein turnover, but is stabilized by BARD1 which can recruit BRCA1 to the nucleus to form a ubiquitin E3 ligase complex involved in DNA repair or cell survival. Here, we identify BARD1 as a regulator of BRCA1-dependent apoptosis. Using transfected MCF-7 breast cancer cells, we found that BRCA1-induced apoptosis was independent of p53 and was stimulated by BRCA1 nuclear export. Conversely, BARD1 reduced BRCA1-dependent apoptosis by a mechanism involving nuclear sequestration. Regulation of apoptosis by BARD1 was reduced by BRCA1 cancer mutations that disrupt Ub ligase function. Transfection of BRCA1 N-terminal peptides that disrupted the cellular BRCA1-BARD1 interaction caused a loss of nuclear BRCA1 that correlated with increased apoptosis in single cell assays, but did not alter localization or expression of endogenous BARD1. Reducing BARD1 levels by siRNA caused a small increase in apoptosis. Our findings identify a novel apoptosis inhibitory function of BARD1 and suggest that nuclear retention of BRCA1-BARD1 complexes contributes to both DNA repair and cell survival.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号