首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
The marmosets, tribe Callitrichini, are the most speciose clade in the subfamily Callitrichinae, containing 21 species. However, there is no consensus among molecular and morphological systematists as to how many genera should be recognized for the group. To test the morphological support for the alternative generic classifications, this study presents a comprehensive phylogenetic analysis. It is the first such analysis to include all 21 species and employ continuous and discrete osteological, pelage and tegument, karyological and vocal characters. This dataset was combined with nucleotide sequences from two mitochondrial and four nuclear regions. Separate analyses showed that, among morphological datasets, osteological characters were best at solving relationships at more inclusive levels, whilst pelage characters were most informative at the interspecific level. This suggests the presence of different transformation rates for the two character sets. When a single most parsimonious tree was obtained using the 83‐character matrix, three main clades were identified, supporting the division of the marmosets into three genera: Callithrix, Cebuella and Mico. The total evidence analysis that included an additional 3481 molecular characters corroborated most of the morphology‐based clades and also supported a three‐genus classification of the marmosets. This is the first morphological study to support an Amazonian marmoset clade (Cebuella Mico), which is also strongly supported in exclusively molecular phylogenies, and to synonimize Callibella under Mico.  相似文献   

3.
Phylogenetic and phylogeographic relationships within and among species of the Atlantic Forest spiny rat Trinomys (family Echimyidae) were examined using cytochrome b sequence data. Levels of sequence divergence among species of Trinomys are as high as those found among taxa of echimyids that are recognized as different genera. Trinomys contains three distinct monophyletic clades that show a striking concordance with vegetational distribution. Haplotypes of clade 1 are distributed along the coastal margins of southeastern Brazil, following the moist tropical forest. Members of clade 2 are found in the semi-deciduous tropical forest. T. albispinus represents clade 3 and is found in a more xeric vegetation. Estimates of divergence times separating the three clades are very deep and range from 1.6 to 7.4 millions of years, predating the climatic fluctuations of the Pleistocene. Therefore, the proposed Late Pleistocene refugia in the Atlantic Forest cannot account for the divergence of the clades of Trinomys , but most likely shaped the modern distribution of species. The current taxonomy of this group does not reflect the diversity and phylogenetic relationships of the named species. However, morphological characters are congruent with the phylogeny uncovered by the molecular data. An extensive taxonomic rearrangement is suggested, reflecting phylogenetic relationships of monophyletic entities within the genus Trinomys , degree of sequence differences, and morphological diagnosability.  相似文献   

4.
The ranging behaviour of a group of marmosets ( Callithrix humeralifer ) in seasonal Amazonian rain forest was studied during one year. Range sizes (monthly and daily), day range lengths and patterns of range use are examined for correlations with feeding behaviour and the distribution of three forest types within the marmoset's range. Seasonal differences in ranging are associated with changes in the abundance and distribution of plant food sources. The marmosets ranged more widely and used more sources of a greater diversity of plant food species, which were distributed over a wider area, in the wet season than in the dry season. In the dry season, they ranged over a smaller area and, although they used fewer sources of a reduced diversity of plant species overall, they exploited a larger number of sources of the five highest ranked plant species in the diet. Throughout the year, they showed a preference for disturbed primary forest, characterized by dense understoreys and abundant second growth patches. Reasons for this preference are discussed, taking into account their use of fruits of typical pioneer species (particularly in the dry season), insect prey abundance, sleeping site availability and defence against predators.  相似文献   

5.
The study of Amazonian biodiversity requires detailed knowledge of the phylogenetic relationships of closely related taxa distributed across Amazonia. The Amazonian poison frogs of the genus Dendrobates have undergone many taxonomic revisions, but the phylogenetic relationships within this group remain poorly understood. Most previous classifications were based on morphology and skin toxin analyses, with limited use of DNA sequence data. Using mtDNA sequence data from four gene regions (cytochrome b, cytochrome oxidase I, 16S rRNA, and 12S rRNA), we present a molecular phylogenetic analysis of the evolutionary relationships within a representative group of Amazonian Dendrobates. We use the resulting phylogenetic hypothesis to investigate different biogeographic hypotheses concerning genetic divergence and species diversity in Amazonia. The results of the analysis support the presence of ancient paleogeographic barriers to gene flow between eastern and western Amazonia, and indicate substantial genetic divergence between species found in the northern and southern regions of western Amazonia.  相似文献   

6.
7.
Small subunit (SSU) rDNA was sequenced for 25 species in 19 genera of the Gigartinales (Rhodophyta). As well, the internal transcribed spacer (ITS) region was sequenced, and a data matrix of 36 morphological characters was constructed for 16 species of Dumontiaceae. Phylogenetic trees were calculated from a multiple alignment of the SSU sequence data to infer relationships between species of Dumontiaceae and other gigartinalean taxa. The SSU analysis produced a polyphyletic Dumontiaceae. Notably, Acrosymphyton failed to associate with the included Gigartinales, let alone the Dumontiaceae, supporting an earlier proposal to remove it to a new family. The analyses were equivocal about the phylogenetic affinities of Dudresnaya , which clustered with the Kallymeniaceae, and the affinities of the Indo-West Pacific Gibsmithia , Kraftia , and Dasyphloea , the last-mentioned clustering with the Antarctic Gainiaceae, and these four taxa with Portieria (Rhizophyllidaceae). Further investigations are necessary to resolve relationships among these taxa. Rhodopeltis , a genus recently moved to the Dumontiaceae from the Polyideaceae, showed a weak association with the remaining northern Dumontiaceae. The final group consisted of cold-temperate Northern Hemisphere species. Phylogenetic analyses using a combination of SSU, ITS, and morphological data within this clade produced two strongly supported clades, a Dilsea / Neodilsea clade and a Cryptosiphonia / Dumontia clade. Dilsea is derived from a paraphyletic Neodilsea and may itself be polyphyletic. Atlantic and Pacific isolates of Dumontia contorta clearly showed sufficient divergence to warrant recognition as distinct species, and Dumontia alaskana , sp. nov. is proposed for the Pacific species.  相似文献   

8.
A molecular phylogenetic analysis of the Hyla pulchella species group was performed to test its monophyly, explore the interrelationships of its species, and evaluate the validity of the taxa that were considered subspecies of H. pulchella. Approximately 2.8 kb from the mitochondrial genes 12s, tRNA valine, 16s, and Cytochrome b were sequenced. The analysis included 50 terminals representing 10 of the 14-15 species currently recognized in the H. pulchella group, including samples from several localities for some taxa, several outgroups, as well as two species previously suspected to be related with the group (Hyla guentheri and Hyla bischoffi). The results show that the H. pulchella and Hyla circumdata groups are distantly related, and, therefore, should be recognized as separate groups. As currently defined, the H. pulchella group is paraphyletic with respect to the Hyla polytaenia group; therefore, we recognize the Hyla polytaenia clade in the H. pulchella group. Two subspecies of H. pulchella recognized by some authors are considered full species including Hyla pulchella riojana because it is only distantly related to H. pulchella, and Hyla pulchella cordobae because molecular and non-molecular evidence suggests that it is specifically distinct. With the inclusion of the H. polytaenia clade, H. guentheri, and H. bischoffi, and the recognition of the two former subspecies of H. pulchella as distinct species, the H. pulchella group now comprises 25 described species. All representatives of the H. pulchella group with an Andean distribution are monophyletic and nested within a clade from the Atlantic forest from south-southeastern Brazil/northeastern Argentina, and Cerrado gallery forest from central Brazil.  相似文献   

9.
The phylogenetic relationships among the loliginid squids, a species-rich group of shallowwater muscular squids, have been investigated recently using several approaches, including allozyme electrophoresis and analyses of morphological and DNA sequence data, yet no consensus has been reached. This study examines the effects of combining multiple data sets (morphology, allozymes and DNA sequence data from two mitochondrial genes) on estimates of loliginid phylogeny. Various data combinations were analysed under three maximum parsimony weighting schemes: equal weights for all characters, successive approximations and implicit weights parsimony. When feasible, support for branches within trees was assessed with nonparametric bootstrapping and decay analysis. Some ingroup relationships were consistent across all analyses, but relationships among outgroup taxa and basal ingroup taxa varied. Combining data increased bootstrap support for several nodes. Methods that downweight highly variable characters (i.e. successive approximations and implicit weights parsimony) produced very similar trees which included two major clades: a clade consisting of all species sampled from American waters (except Sepioteuthis ), and a clade of several east Atlantic species ( Loligo forbesi Steenstrup, Loligo vulgaris Lamarck and Loligo reynaudi d'Orbigny) plus several Indo-West Pacific species in the genera Uroteuthis and Loliolus. The Sepioteuthis species occupied a basal position within Loliginidae, but Sepioteuthis itself was not always monophyletic. The position of a clade of a few Lolliguncula species and Loligo (Alloteuthis) also varied across analyses. A new loliginid classification is proposed based on these findings.  相似文献   

10.
The phylogenetic status of arthropods, as inferred from 18S rRNA sequences   总被引:16,自引:4,他引:12  
Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.   相似文献   

11.

Background

The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.

Results

For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp) representing Ascaridida, Wellcomia siamensis (14,128 bp) representing Oxyurida, and Heliconema longissimum (13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.

Conclusion

The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3rd positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.
  相似文献   

12.
Complete 18S ribosomal DNA (rDNA) sequences and partial 28S rDNA sequences from a selection of rhabditophoran taxa were obtained and used in combination with literature data to determine the phylogenetic position of the Prolecithophora and of two families sometimes included in the Prolecithophora, the Urastomidae and the Genostomatidae. The results are largely compatible with earlier molecular studies when supported clades are considered, and adjusting for the denser taxonomic sampling of this study. The position of the Proseriata is not compatible with the taxon Seriata, which is rejected. The Rhabdocoela excluding the Fecampiida and the Neodermata is monophyletic. The phylogenetic position of the Neodermata cannot be determined, but its placement is not compatible with the proposed taxa Revertospermata and Mediofusata Kornakova & Joffe, 1999, which are rejected. The Urastomidae and the Genostomatidae in all analyses group with the Fecampiida, and it is our recommendation that these taxa be included in the Fecampiida. The amended Fecampiida always group separately from the Prolecithophora sensu stricto , the Rhabdocoela, and the Neodermata. Our analyses reveal the existence of a strongly supported clade consisting of Prolecithophora + Tricladida + the amended Fecampiida, and we propose the name Adiaphanida for this clade. Tentatively the sister group of the Prolecithophora is a clade consisting of the Tricladida + amended Fecampiida.  相似文献   

13.
Background and Aims Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade.Methods Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, ‘geographic state speciation and extinction’, was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas.Key Results Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot.Conclusions This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas contributes to the highest levels of plant diversity in the Bahian refugium.  相似文献   

14.
从线粒体16S rDNA序列探讨绒螯蟹类的系统发生关系   总被引:20,自引:0,他引:20  
测定了绒螯蟹类各物种的线粒体16SrDNA部分片段的序列,构建了NJ树、ML树和MP树。序列歧异数据比较和各系统发生树都支持新绒螯蟹属(Neoeriocheir)为一个独立的属。在3种系统发生树中,直额绒螯蟹(Eriocheir recta)都是绒螯蟹属(Eriocheir)所有其它成员的姐妹群,并且广东珠江1只直额绒螯蟹标本的16SrDNA部分序列与台湾产台湾绒螯蟹(Eriocheir formasa)的相应序列相同。这些结果不支持平绒螯蟹属(Platyeriocheir)是一个有效的属,并表明E.formosa是E.recta的同物异名。绒螯蟹属(Eriocheir)所有其它成员聚为一个单系的分支,支持中华绒螯蟹、合浦绒螯蟹与日本绒螯蟹属于同一个物种Eriocheir japonica。16SrDNA部分序列的比对表明,产于台湾的日本绒螯蟹的此段序列与合浦绒螯蟹的相同,产于崇明岛的和产于美国旧金山海湾的中华绒螯蟹的此段序列与中华绒螯蟹单元型B的序列相同。  相似文献   

15.
In order to test hypotheses about the phylogenetic relationships among living genera of New World monkeys, 1.3 kb of DNA sequence information was collected for two introns of the glucose-6-phosphate dehydrogenase (G6PD) locus, encoded on the X chromosome, for 24 species of New World monkeys. These data were analyzed using a maximum parsimony algorithm. The strict consensus of the three most-parsimonious gene trees that result shows support for the following clades: a pitheciine clade including Callicebus within which Chiropotes and Cacajao are sister taxa, an Alouatta-atelin clade within which Brachyteles is the sister taxon of Lagothrix and which is sister to another clade containing the callitrichines, and a callitrichine/Aotus/Cebus/Saimiri clade. Within the callitrichines, Callimico is the sister taxon of Callithrix. Cebus and Saimiri form a clade. These results are broadly consistent with previously published DNA sequence analyses of platyrrhine phylogeny and provide additional support for groupings provisionally proposed in those earlier studies. Nevertheless, questions remain as to the relative phylogenetic placement of Leontopithecus and Saguinus, the branching order within the Aotus/Cebus/Saimiri/callitrichine clade, and the placement of the pitheciine clade relative to the atelines and the callitrichines.  相似文献   

16.
Aim We present a molecular phylogenetic analysis of Brotogeris (Psittacidae) using several distinct and complementary approaches: we test the monophyly of the genus, delineate the basal taxa within it, uncover their phylogenetic relationships, and finally, based on these results, we perform temporal and spatial comparative analyses to help elucidate the historical biogeography of the Neotropical region. Location Neotropical lowlands, including dry and humid forests. Methods Phylogenetic relationships within Brotogeris were investigated using the complete sequences of the mitochondrial genes cyt b and ND2, and partial sequences of the nuclear intron 7 of the gene for Beta Fibrinogen for all eight species and 12 of the 17 taxa recognized within the genus (total of 63 individuals). In order to delinetae the basal taxa within the genus we used both molecular and plumage variation, the latter being based on the examination of 597 skin specimens. Dates of divergence and confidence intervals were estimated using penalized likelihood. Spatial and temporal comparative analyses were performed including several closely related parrot genera. Results Brotogeris was found to be a monophyletic genus, sister to Myiopsitta. The phylogenetic analyses recovered eight well‐supported clades representing the recognized biological species. Although some described subspecies are diagnosably distinct based on morphology, there was generally little intraspecific mtDNA variation. The Amazonian species had different phylogenetic affinities and did not group in a monophyletic clade. Brotogeris diversification took place during the last 6 Myr, the same time‐frame as previously found for Pionus and Pyrilia. Main conclusions The biogeographical history of Brotogeris implies a dynamic history for South American biomes since the Pliocene. It corroborates the idea that the geological evolution of Amazonia has been important in shaping its biodiversity, argues against the idea that the region has been environmentally stable during the Quaternary, and suggests dynamic interactions between wet and dry forest habitats in South America, with representatives of the Amazonian biota having several independent close relationships with taxa endemic to other biomes.  相似文献   

17.
Mitochondrial cytochrome oxidase II (COII) gene sequences (549 base pairs) were used to investigate the taxonomic relationships among 12 marmoset (Callithrix, Cebuella and Mico) taxa. A large number of substitutions were found in the third base codon positions, providing a strong phylogenetic signal in a gene coding a conserved protein. Despite the significant affinity between the 2 Amazonian genera Cebuella and Mico, found in recent molecular studies, the analysis presented here did not resolve convincingly the phylogenetic relationships between the 3 genera. Mico nevertheless formed 3 distinct clades, reflecting a basic division of species groups based on geographic distribution (east or west of the Rio Tapajós) rather than morphology (presence or absence of auricular hair). This supports the taxonomic distinction of the allopatric emiliae forms. In Callithrix, Callithrix aurita forms a distinct clade, but the remaining morphotypes form a somewhat contradictory cluster, possibly resulting from an extremely rapid radiation.  相似文献   

18.
We analyzed sequence data of the 18S rDNA gene from representatives of nine mycoparasitic or zooparasitic genera to infer the phylogenetic relationships of these fungi within the Zygomycota. Phylogenetic analyses identified a novel monophyletic clade consisting of the Zoopagales, Kickxellales, Spiromyces, and Harpellales. Analyses also identified a monophyletic mycoparasitic-zooparasitic Zoopagales clade in which Syncephalis, Thamnocephalis, and Rhopalomyces form a sister group to a Piptocephalis-Kuzuhaea clade. Although monophyly of the mycoparasitic Dimargaritales received strong bootstrap and decay index support, phylogenetic relationships of this order could not be resolved because of the unusually high rate of base substitutions within the 18S rDNA gene. Overall, the 18S gene tree topology is weak, as reflected by low bootstrap and decay index support for virtually all internal nodes uniting ordinal and superordinal taxa. Nevertheless, the 18S rDNA phylogeny is mostly consistent with traditional phenotypic-based classification schemes of the Fungi.  相似文献   

19.
Phylogenetic relationships were studied based on DNA sequences obtained from all recognized genera of the family Corvidae sensu stricto . The aligned data set consists 2589 bp obtained from one mitochondrial and two nuclear genes. Maximum parsimony, maximum-likelihood, and Bayesian inference analyses were used to estimate phylogenetic relationships. The analyses were done for each gene separately, as well as for all genes combined. An analysis of a taxonomically expanded data set of cytochrome b sequences was performed in order to infer the phylogenetic positions of six genera for which nuclear genes could not be obtained. Monophyly of the Corvidae is supported by all analyses, as well as by the occurrence of a deletion of 16 bp in the β-fibrinogen intron in all ingroup taxa. Temnurus and Pyrrhocorax are placed as the sister group to all other corvids, while Cissa and Urocissa appear as the next clade inside them. Further up in the tree, two larger and well-supported clades of genera were recovered by the analyses. One has an entirely New World distribution (the New World jays), while the other includes mostly Eurasian (and one African) taxa. Outside these two major clades are Cyanopica and Perisoreus whose phylogenetic positions could not be determined by the present data. A biogeographic analysis of our data suggests that the Corvidae underwent an initial radiation in Southeast Asia. This is consistent with the observation that almost all basal clades in the phylogenetic tree consist of species adapted to tropical and subtropical forest habitats.  相似文献   

20.
Aim Several recent studies have suggested that a substantial portion of today’s plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than by vicariance. In general, three routes have been documented for the dispersal of taxa onto the South American continent: (1) via the North Atlantic Land Bridge, (2) via the Bering Land Bridge, or (3) from Africa directly onto the continent. Here a species‐rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae) is used as a model to investigate these three hypotheses. Location The Neotropics. Methods The phylogenetic relationships within the long‐branch clade of Annonaceae were reconstructed (using maximum parsimony, maximum likelihood and Bayesian inference) in order to gain insight in the phylogenetic position of Guatteria. Furthermore, Bayesian molecular dating and Bayesian dispersal–vicariance (Bayes‐DIVA) analyses were undertaken. Results Most of the relationships within the long‐branch clade of Annonaceae were reconstructed and had high support. However, the relationship between the Duguetia clade, the XylopiaArtabotrys clade and Guatteria remained unclear. The stem node age estimate of Guatteria ranged between 49.2 and 51.3 Ma, whereas the crown node age estimate ranged between 11.4 and 17.8 Ma. For the ancestral area of Guatteria and its sister group, the area North America–Africa was reconstructed in 99% of 10,000 DIVA analyses, while South America–North America was found just 1% of the time. Main conclusions The estimated stem to crown node ages of Guatteria in combination with the Bayes‐DIVA analyses imply a scenario congruent with an African origin followed by dispersal across the North Atlantic Land Bridge in the early to middle Eocene and further dispersal into North and Central America (and ultimately South America) in the Miocene. The phylogenetically and morphologically isolated position of the genus is probably due to extinction of the North American and European stem lineages in the Tertiary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号