首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
唐静  朱晓玲  张磊 《生物磁学》2013,(3):578-581
凝溶胶蛋白(gelsolin,GSN)是一种在机体内普遍存在的,对细胞结构和代谢功能具有多种调节作用的蛋白。GSN作为凝溶胶蛋白超家族的成员之一,是一种重要的肌动蛋白(actin)结合蛋白,可通过切断、封闭肌动蛋白丝,或使actin聚集成核等方式来调控actin的结构与代谢功能.GSN不仅能在重组的肌动蛋白细丝(F-actin)中发挥作用,而且在细胞运动、细胞凋亡等细胞活动中也发挥着重要的作用。GSN有血浆型(plasma gelsolin,pGSN)和细胞质型(cytoplasmic gelsolin,cGSN)两种亚型,它们在淀粉样变性、炎症、癌症、心血管疾病、阿茨海默病(AD)及肾脏疾病中都起着重要的作用,GSN可能成为多种疾病的一个新的生物标记物或者治疗靶点。本文将就GSN与相关疾病的关系的研究进展做一综述。  相似文献   

2.
凝溶胶蛋白(gelsolin)是凝溶胶蛋白超家族的成员之一,是一种重要的肌动蛋白结合蛋白,其通过切断、封端肌动蛋白丝,或使肌动蛋白聚集成核等方式来控制肌动蛋白的结构.凝溶胶蛋白除了在重组肌动蛋白丝中发挥作用以外,还在细胞运动、控制细胞程序性死亡等细胞活动中发挥重要的作用.此外,肿瘤细胞中凝溶胶蛋白的表达量也发生变化.凝溶胶蛋白的变异还是某些遗传疾病的基础.最近的研究发现,凝溶胶蛋白可以作为转录辅激活蛋白,促进雄激素受体的转录活性.本文对凝溶胶蛋白的结构特点、参与调节细胞的功能和机制及其研究现状进行概述.  相似文献   

3.
凝溶胶蛋白(gelsolin,GSN)是Gelsolin/Villin超家族的核心成员,是一种多功能的钙依赖性肌动蛋白结合蛋白,在细胞中Ca^2+和PIP2等多因素的调控下,对细胞凋亡、吞噬功能、肌动蛋白微丝切割、细胞信号转导等方面起着重要的作用。近年来,凝溶胶蛋白还被频繁用于相关疾病的预防、诊断与治疗,但其在调控细胞凋亡、炎症等病理生理中的作用机制还存在些许争议。本研究综述了凝溶胶蛋白的结构特点、生物学功能以及对疾病的诊断和治疗,旨在了解凝溶胶蛋白在生物医学及动物科学等领域的应用以及未来凝溶胶蛋白的发展前景。  相似文献   

4.
凝溶胶蛋白(gelsolin,GSN)是机体内重要的肌动蛋白结合蛋白,对肌动蛋白的聚合/解聚具有重要调节作用。其生理效应不仅在于维持细胞结构稳定,而且参与多种细胞活动的调节过程,是一种重要的细胞功能调节蛋白。血浆型GSN是血浆肌动蛋白清除系统主要成员之一,对维持内环境稳定非常重要。严重创伤后血浆中GSN水平显著而持续降低,且与患者预后密切相关。本文综述GSN与创伤后炎症反应的关系。  相似文献   

5.
肌切蛋白(scinderin)是一种重要的肌动蛋白结合蛋白,在哺乳动物和脊椎动物中广泛表达.肌切蛋白作为凝溶胶蛋白超家族的成员之一,通过肌动蛋白丝切割、肌动蛋白聚集等方式来控制肌动蛋白的结构.肌切蛋白生物活性具有多样性,除影响肌动蛋白丝重组外,肌切蛋白还参与细胞胞吐作用、调节细胞运动、细胞分化等细胞活动.此外,肌切蛋白在慢性炎症、凝血过程、免疫性疾病和肿瘤发生发展中也发挥了重要作用.本文对肌切蛋白的结构特点、参与调节细胞的功能和机制进行概述.  相似文献   

6.
α辅肌动蛋白的结构和功能   总被引:5,自引:0,他引:5  
α辅肌动蛋白是近年来在细胞骨架与细胞运动研究中的热点蛋白 .目前发现有α辅肌动蛋白 1、2、3和 4四种类型 ,呈细胞或组织特异性分布 .这四种蛋白的共同结构特征是在细胞内均为反向平行的二聚体 ,并具有N末端肌动蛋白结合结构域 (ABD)、血影蛋白样中央重复结构域和C末端“EF手”结构域 .作为细胞骨架中一种重要的肌动蛋白交联蛋白 ,α辅肌动蛋白通过与其相关蛋白包括整合素 (integrins)、钙粘素 (cadherin)以及细胞信号传导通路中的信号分子等的协同作用 ,在稳定细胞粘附、调节细胞形状及细胞运动中发挥着重要作用 .因此 ,肿瘤的发生、发展和恶化与α辅肌动蛋白的结构、功能密切相关 .本文结合本实验室的研究工作 ,综述了α辅肌动蛋白家族成员的结构、功能及其与肿瘤发生的相关性 .  相似文献   

7.
目的:分析gelsolin蛋白对类风湿性关节炎(rheumatoid arthritis,RA)和系统性红斑狼疮(systemic lupus erythematosus,SLE)的临床诊断及疾病活动度评价的意义。方法:采集RA 30名和SLE 47名及健康人群50名的临床资料及血清标本,定量Western Blot法检测血清gelsolin水平。分析gelsolin蛋白与RA和SLE患者临床表现及疾病活动度的相关性。结果:RA、SLE和正常对照组之间性别、年龄、血红蛋白、血小板、血红细胞、血白细胞之间没有显著差异;RA患者出现CRP、转氨酶、RF、CCP异常的阳性率明显高于SLE患者(P0.05);而SLE患者出现白蛋白、尿蛋白、尿红细胞、尿素氮、ANA、肌酐异常增高的几率高于RA患者(P0.05)。gelsolin蛋白在SLE和RA血清中的含量均显著低于正常人(P0.05),且RA患者含量更低(P0.05)。gelsolin蛋白滴度与RA的疾病活动度无明显相关性(r=0.089,P=0.652),而与SLE的疾病活动度呈显著负相关(r=0.646,P0.05)。gelsolin蛋白正常组RA患者的转氨酶升高、CRP、RF、CCP阳性率均显著高于SLE患者(P0.05)。gelsolin蛋白降低组SLE患者的白蛋白、尿蛋白、尿红细胞、尿素氮、ANA、肌酐阳性率显著高于RA患者(P0.05)。结论:gelsolin蛋白滴度检测可作为RA和SLE临床辅助诊断手段,其滴度变化可作为SLE疾病活动度进展的预判指标。  相似文献   

8.
Plastin是一种肌动蛋白结合蛋白,可与纤维状肌动蛋白结合,使纤维状肌动蛋白相互交联形成紧密的束状结构,起到稳定细胞肌动蛋白骨架以及调节细胞运动的作用。Plastin家族有三种亚型,组织特异性地在哺乳动物体内不同组织细胞中表达,并且在肿瘤内异常表达。研究Plastin家族蛋白与肿瘤之间的关系在肿瘤早期诊断和基因治疗方面都有重要的理论指导意义。本文综述了近年来关于Plastin家族蛋白分子结构、功能特点以及在肿瘤中作用等的相关研究,为该领域的研究提供一定的参考。  相似文献   

9.
Plastin是一种肌动蛋白结合蛋白,可与纤维状肌动蛋白结合,使纤维状肌动蛋白相互交联形成紧密的束状结构,起到稳定细胞肌动蛋白骨架以及调节细胞运动的作用。Plastin家族有三种亚型,组织特异性地在哺乳动物体内不同组织细胞中表达,并且在肿瘤内异常表达。研究Plastin家族蛋白与肿瘤之间的关系在肿瘤早期诊断和基因治疗方面都有重要的理论指导意义。本文综述了近年来关于Plastin家族蛋白分子结构、功能特点以及在肿瘤中作用等的相关研究,为该领域的研究提供一定的参考。  相似文献   

10.
研究高血压相关基因hrg 1表达与血管平滑肌细胞 (VSMC)再分化的关系及其在细胞生物学行为调节方面的作用 .采用血清饥饿培养和全反式维甲酸诱导使处于增殖状态的去分化型VSMC再分化 ,观察细胞再分化过程中HRG 1表达变化 ,并探讨其功能 .在血清饥饿和维甲酸诱导VSMC再分化过程中 ,hrg 1基因表达显著上调 ,其表达活性在诱导 2 4h达高峰之后 ,一直维持在较高水平上 ,且其表达量和变化规律与细胞收缩蛋白SMα肌动蛋白和SM2 2α相类似 .免疫共沉淀和免疫双荧光染色结果证实 ,HRG 1抗体可与SMα肌动蛋白共沉淀 ,且两者在同一细胞共定位 .用HRG 1表达质粒转染去分化型VSMC可显著抑制其迁移能力 .结果提示 ,HRG 1在胞质中以与SMα肌动蛋白相互缔合的方式存在 ,其表达与VSMC分化有关 ,该蛋白通过参与细胞骨架构成而调节VSMC收缩与迁移  相似文献   

11.
The prognostic implications of declining plasma gelsolin levels have been documented after a diverse variety of acute insults. Because gelsolin concentrations fall prior to the development of complications, a pathophysiological role for gelsolin depletion has been postulated in delayed multiorgan failure. The original hypothesis about the function of circulating gelsolin was that it scavenged actin released from cells at the site of injury. Although extracellular actin may be the primary cause of gelsolin depletion, the biologic imperative for gelsolin could entail the modulation of several inflammatory mediators as much as the disposal of actin. Translational research is actively addressing whether replenishment of plasma gelsolin could provide an efficacious and well tolerated therapeutic intervention in selected seriously ill patients.  相似文献   

12.
AimsFormation of different protrusive structures by migrating cells is driven by actin polymerization at the plasma membrane region. Gelsolin is an actin binding protein controlling the length of actin filaments by its severing and capping activity. The main goal of this study was to determine the effect of gelsolin expression on the migration of human colon adenocarcinoma LS180 and melanoma A375 cells.Main methodsColon adenocarcinoma cell line LS180 was stably transfected with plasmid containing human cytoplasmic gelsolin cDNA tagged to enhanced green fluorescence protein (EGFP). Melanoma A375 cells were transfected with siRNAs directed against gelsolin. Real-time PCR and Western blotting were used to determine the level of gelsolin. The ability of actin to inhibit DNase I activity was used to quantify monomeric and total actin level and calculate the state of actin polymerization. Fluorescence confocal microscopy was applied to observe gelsolin and vinculin distribution along with actin cytoskeleton organization.Key findingsIncreased level of gelsolin expression leads to its accumulation at the submembranous region of the cell accompanied by distinct changes in the state of actin polymerization and an increase in the migration of LS180 cells. In addition, LS180 cells overexpressing gelsolin form podosome-like structures as indicated by vinculin redistribution and its colocalization with gelsolin and actin. Downregulation of gelsolin expression in melanoma A375 cells significantly reduces their migratory potential.SignificanceOur experimental data indicate that alterations in the expression level of gelsolin and its subcellular distribution may be directly responsible for determining migration capacity of human cancer cells.  相似文献   

13.
The effect of plasma gelsolin on plant microfilaments and its localization in plant cells were investigated. The results by using ultracentrifugation and electron microscopy showed that plant microfilaments could be severed into shorter fragments by gelsolin in a Ca2+-dependent manner. By measuring the binding ability of plasma gelsolin to pollen actin using the method of immunoprecipitation, it was shown that pollen actin could bind gelsolin at a ratio of 2.0±0.21 in the presence of Ca2+. Addition of EGTA could disassociate the actin-gelsolin complexes, reducing the ratio to 1.2±0.23, and the addition of PIP2 could further reduce the ratio to 0.8±0.1. The results indicate that plant actin has similar binding properties with plasma gelsolin as that of animal actin. By Western blotting we identified the existence of gelsolin in lily pollen. The results of immunolo-calization of gelsolin in pollen and pollen tube showed that gelsolin was mainly localized at the germinal furrow in pollen grains and at the cytoplasm in pollen tube, especially in the tip region.  相似文献   

14.
The dynamics of the actin cytoskeleton depends upon the unique constellation of ac- tin-binding proteins (ABPs), as well as their spatial distribution and local activation. However, the identification and characterization of actin-binding proteins in plant cells are still limited. At pre- sent, only a few plant ABPs have been identified in plant tissues, including profilin, ADF/cofilin, fimbrin, villin and several myosins. Compared with that in animals, there is still a long way for us …  相似文献   

15.
Functional studies that distinguish free from actin-bound gelsolin based on the ability of the former to sever actin filaments reveal that the binding of actin monomers to gelsolin is highly cooperative and can be prevented by prior incubation of actin with vitamin D-binding protein (DBP), even though the apparent affinity of gelsolin for actin is 50-fold greater than that of DBP. Measurements of actin binding by immunoprecipitation and pyrene-actin fluorescence establish that DBP-actin complexes do not bind to gelsolin and that DBP removes one of the actin monomers in a 2:1 actin-gelsolin complex. These studies may explain why DBP-actin complexes exist in blood plasma in vivo in the presence of free gelsolin and suggest that the interaction of gelsolin with actin in cells and plasma may be regulated in part by actin monomer binding proteins.  相似文献   

16.
We have identified an approximately 85-kD protein in chicken erythrocytes which is immunologically, structurally, and functionally related to the gelsolin found in many muscle and nonmuscle cell types. Cell fractionation reveals a Ca2+-dependent partitioning of gelsolin into the soluble cytoplasm and the membrane-associated cytoskeleton of differentiating or mature erythrocytes. Depending on either the presence of Ca2+ during cell lysis or on the preincubation of the intact cells with the Ca2+-ionophore A23187, up to 40% of the total cellular gelsolin is found associated with the membrane skeleton. Expression of gelsolin shows a strong negative regulation during erythroid differentiation. From quantitations of its steady-state molar ratio to actin, gelsolin is abundant in early progenitor cells as revealed from avian erythroblastosis virus- and S13 virus-transformed cells which are arrested at the colony forming unit erythroid (CFU-e) stage of erythroid development. In these cells, which have a rudimentary and unstable membrane skeleton, gelsolin remains quantitatively cytoplasmic, irrespective of the Ca2+ concentration. During chicken embryo development and maturation, the expression of gelsolin decreases by a factor of approximately 10(3) in erythroid cells. This down regulation is independent from that of actin, which is considerably less, and is observed also when S13-transformed erythroid progenitor cells are induced to differentiate under conditions where the actin content of these cells does not change. In mature erythrocytes of the adult the amount of gelsolin is low, and significantly less than required for potentially capping of all membrane-associated actin filaments. We suggest that the gelsolin in erythroid cells is involved in the assembly of the actin filaments present in the membrane skeleton, and that it may provide for a mechanism, by means of its severing action on actin filaments, to extend the meshwork of the spectrin-actin-based membrane skeleton in erythroid cells during erythropoiesis.  相似文献   

17.
The actin filament-severing domain of plasma gelsolin   总被引:20,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

18.
19.
Synthesis and secretion of serum gelsolin by smooth muscle tissue   总被引:7,自引:0,他引:7  
Gelsolin is one of many actin binding proteins which regulate the structure of intracellular microfilaments. A secretory form of gelsolin, a protein also known as "actin depolymerizing factor" or "brevin," is present in animal sera. In the present studies, we: demonstrate that a 90-kDa secretory protein produced by chicken gizzard smooth muscle is serum gelsolin; show that chicken serum gelsolin, as compared with its mammalian counterparts, lacks 26 amino acid residues at its NH2-terminal end; show that gizzard smooth muscle devotes on the order of 100 times more of its total protein synthetic effort (about 1% of the total) to the production of serum gelsolin than does liver, a previously speculated major source of this protein; and give evidence that rat tissues which are rich in smooth muscle cells (blood vessels, uterine muscle) also produce serum gelsolin. Our work suggests that, in vivo, smooth muscle-containing tissues may be major producers of the serum form of this actin binding protein.  相似文献   

20.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号