首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The immunoglobulin superfamily recognition molecule L1 plays important functional roles in the developing and adult nervous system. Metalloprotease-mediated cleavage of this adhesion molecule has been shown to stimulate cellular migration and neurite outgrowth. We demonstrate here that L1 cleavage is mediated by two distinct members of the disintegrin and metalloprotease family, ADAM10 and ADAM17. This cleavage is differently regulated and leads to the generation of a membrane bound C-terminal fragment, which is further processed through gamma-secretase activity. Pharmacological approaches with two hydroxamate-based inhibitors with different preferences in blocking ADAM10 and ADAM17, as well as loss of function and gain of function studies in murine embryonic fibroblasts, showed that constitutive shedding of L1 is mediated by ADAM10 while phorbol ester stimulation or cholesterol depletion led to ADAM17-mediated L1 cleavage. In contrast, N-methyl-d-aspartate treatment of primary neurons stimulated ADAM10-mediated L1 shedding. Both proteases were able to affect L1-mediated adhesion and haptotactic migration of neuronal cells. In particular, both proteases were involved in L1-dependent neurite outgrowth of cerebellar neurons. Thus, our data identify ADAM10 and ADAM17 as differentially regulated L1 membrane sheddases, both critically affecting the physiological functions of this adhesion protein.  相似文献   

2.
Cadherins are critically involved in tissue development and tissue homeostasis. We demonstrate here that neuronal cadherin (N-cadherin) is cleaved specifically by the disintegrin and metalloproteinase ADAM10 in its ectodomain. ADAM10 is not only responsible for the constitutive, but also for the regulated, shedding of this adhesion molecule in fibroblasts and neuronal cells directly regulating the overall levels of N-cadherin expression at the cell surface. The ADAM10-induced N-cadherin cleavage resulted in changes in the adhesive behaviour of cells and also in a dramatic redistribution of beta-catenin from the cell surface to the cytoplasmic pool, thereby influencing the expression of beta-catenin target genes. Our data therefore demonstrate a crucial role of ADAM10 in the regulation of cell-cell adhesion and on beta-catenin signalling, leading to the conclusion that this protease constitutes a central switch in the signalling pathway from N-cadherin at the cell surface to beta-catenin/LEF-1-regulated gene expression in the nucleus.  相似文献   

3.
We showed previously that PrPc undergoes constitutive and phorbol ester-regulated cleavage inside the 106-126 toxic domain of the protein, leading to the production of a fragment referred to as N1. Here we show by a pharmacological approach that o-phenanthroline, a general zinc-metalloprotease inhibitors, as well as BB3103 and TAPI, the inhibitors of metalloenzymes ADAM10 (A disintegrin and metalloprotease); and TACE, tumor necrosis factor alpha-converting enzyme; ADAM17), respectively, drastically reduce N1 formation. We set up stable human embryonic kidney 293 transfectants overexpressing human ADAM10 and TACE, and we demonstrate that ADAM10 contributes to constitutive N1 production whereas TACE mainly participates in regulated N1 formation. Furthermore, constitutive N1 secretion is drastically reduced in fibroblasts deficient for ADAM10 whereas phorbol 12,13-dibutyrate-regulated N1 production is fully abolished in TACE-deficient cells. Altogether, our data demonstrate for the first time that disintegrins could participate in the catabolism of glycosyl phosphoinositide-anchored proteins such as PrPc. Second, our study identifies ADAM10 and ADAM17 as the protease candidates responsible for normal cleavage of PrPc. Therefore, these disintegrins could be seen as putative cellular targets of a therapeutic strategy aimed at increasing normal PrPc breakdown and thereby depleting cells of the putative 106-126 "toxic" domain of PrPc.  相似文献   

4.
The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule. Inhibition experiments with selective hydroxamate inhibitors against the disintegrin-like metalloproteinases a disintegrin and metalloproteinase domain (ADAM)10 and ADAM17 suggest that ADAM10, but not ADAM17, is involved in constitutive CXCL16 cleavage. In addition, the constitutive cleavage of transfected human CXCL16 was markedly reduced in embryonic fibroblasts generated from ADAM10-deficient mice. By induction of murine CXCL16 in ADAM10-deficient fibroblasts with IFN-gamma and TNF-alpha, we show that endogenous ADAM10 is indeed involved in the release of endogenous CXCL16. Finally, the shedding of endogenous CXCL16 could be reconstituted by retransfection of ADAM10-deficient cells with ADAM10. Analyzing the expression and release of CXCXL16 by cultured vascular cells, we found that IFN-gamma and TNF-alpha synergize to induce CXCL16 mRNA. The constitutive shedding of CXCL16 from the endothelial cell surface is blocked by inhibitors of ADAM10 and is independent of additional inhibition of ADAM17. Hence, during inflammation in the vasculature, ADAM10 may act as a CXCL16 sheddase and thereby finely control the expression and function of CXCL16 in the inflamed tissue.  相似文献   

5.
Betacellulin belongs to the family of epidermal growth factor-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release a soluble mature growth factor. In this study, we investigated the ectodomain shedding of the betacellulin precursor (pro-BTC) in conditionally immortalized wild-type (WT) and ADAM-deficient cell lines. Sequential ectodomain cleavage of the predominant cell-surface 40-kDa form of pro-BTC generated a major (26-28 kDa) and two minor (20 and 15 kDa) soluble forms and a cellular remnant lacking the ectodomain (12 kDa). Pro-BTC shedding was activated by calcium ionophore (A23187) and by the metalloprotease activator p-aminophenylmercuric acetate (APMA), but not by phorbol esters. Culturing cells in calcium-free medium or with the protein kinase Cdelta inhibitor rottlerin, but not with broad-based protein kinase C inhibitors, blocked A23187-activated pro-BTC shedding. These same treatments were without effect for constitutive and APMA-induced cleavage events. All pro-BTC shedding was blocked by treatment with a broad-spectrum metalloprotease inhibitor (GM6001). In addition, constitutive and activated pro-BTC shedding was differentially blocked by TIMP-1 or TIMP-3, but was insensitive to treatment with TIMP-2. Pro-BTC shedding was functional in cells from ADAM17- and ADAM9-deficient mice and in cells overexpressing WT or catalytically inactive ADAM17. In contrast, overexpression of WT ADAM10 enhanced constitutive and activated shedding of pro-BTC, whereas overexpression of catalytically inactive ADAM10 reduced shedding. These results demonstrate, for the first time, activated pro-BTC shedding in response to extracellular calcium influx and APMA and provide evidence that ADAM10 mediates constitutive and activated pro-BTC shedding.  相似文献   

6.
The membrane-anchored metalloproteinase a disintegrin and metalloprotease 10 (ADAM10) is required for shedding of membrane proteins such as EGF, betacellulin, the amyloid precursor protein, and CD23 from cells. ADAM10 is constitutively active and can be rapidly and post-translationally enhanced by several stimuli, yet little is known about the underlying mechanism. Here, we use ADAM10-deficient cells transfected with wild type or mutant ADAM10 to address the role of its cytoplasmic and transmembrane domain in regulating ADAM10-dependent protein ectodomain shedding. We report that the cytoplasmic domain of ADAM10 negatively regulates its constitutive activity through an ER retention motif but is dispensable for its stimulated activity. However, chimeras with the extracellular domain of ADAM10 and the transmembrane domain of ADAM17 with or without the cytoplasmic domain of ADAM17 show reduced stimulated shedding of the ADAM10 substrate betacellulin, whereas the ionomycin-stimulated shedding of the ADAM17 substrates CD62-L and TGFα is not affected. Moreover, we show that influx of extracellular calcium activates ADAM10 but is not essential for its activation by APMA and BzATP. Finally, the rapid stimulation of ADAM10 is not significantly affected by incubation with proprotein convertase inhibitors for up to 8 h, arguing against a major role of increased prodomain removal in the rapid stimulation of ADAM10. Thus, the cytoplasmic domain of ADAM10 negatively influences constitutive shedding through an ER retention motif, whereas the cytoplasmic domain and prodomain processing are not required for the rapid activation of ADAM10-dependent shedding events.  相似文献   

7.
ADAMs are membrane-anchored glycoproteins with functions in fertilization, heart development, neurogenesis, and protein ectodomain shedding. Here we report an evaluation of the catalytic activity of recombinantly expressed soluble forms of ADAM19, a protein that is essential for cardiovascular morphogenesis. Proteolytic activity of soluble forms of ADAM19 was first demonstrated by their autocatalytic removal of a purification tag (Myc-His) and their ability to cleave myelin basic protein and the insulin B chain. The metalloprotease activity of ADAM19 is sensitive to the hydroxamic acid-type metalloprotease inhibitor BB94 (batimastat) but not to tissue inhibitors of metalloproteases (TIMPs) 1-3. Moreover, ADAM19 cleaves peptides corresponding to the known cleavage sites of tumor necrosis factor-alpha (TNF-alpha), TNF-related activation-induced cytokine (TRANCE, also referred to as osteoprotegerin ligand), and kit ligand-1 (KL-1) in vitro. Although ADAM19 is not required for shedding of TNFalpha and TRANCE in mouse embryonic fibroblasts, its overexpression in COS-7 cells results in strongly increased TRANCE shedding. This suggests a potential role for ADAM19 in shedding TRANCE in cells where both molecules are highly expressed, such as in osteoblasts. Interestingly, our results also indicate that ADAM19 can function as a negative regulator of KL-1 shedding in both COS-7 cells and mouse embryonic fibroblasts, instead of acting directly on KL-1. The identification of potential in vitro substrates offers the basis for further functional studies of ADAM19 in cells and in mice.  相似文献   

8.
Signaling via the epidermal growth factor receptor (EGFR), which has critical roles in development and diseases such as cancer, is regulated by proteolytic shedding of its membrane-tethered ligands. Sheddases for EGFR-ligands are therefore key signaling switches in the EGFR pathway. Here, we determined which ADAMs (a disintegrin and metalloprotease) can shed various EGFR-ligands, and we analyzed the regulation of EGFR-ligand shedding by two commonly used stimuli, phorbol esters and calcium influx. Phorbol esters predominantly activate ADAM17, thereby triggering a burst of shedding of EGFR-ligands from a late secretory pathway compartment. Calcium influx stimulates ADAM10, requiring its cytoplasmic domain. However, calcium influx-stimulated shedding of transforming growth factor alpha and amphiregulin does not require ADAM17, even though ADAM17 is essential for phorbol ester-stimulated shedding of these EGFR-ligands. This study provides new insight into the machinery responsible for EGFR-ligand release and thus EGFR signaling and demonstrates that dysregulated EGFR-ligand shedding may be caused by increased expression of constitutively active sheddases or activation of different sheddases by distinct stimuli.  相似文献   

9.
Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM1801) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM‐transfected L‐fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters. Pervanadate‐induced shedding was mediated by a disintegrin metalloprotease (ADAM), regulated by ERK1/2 MAP kinase. In primary cortical neurons, NCAM was shed at high levels, and the metalloprotease inhibitor GM6001 significantly increased NCAM‐dependent neurite branching and outgrowth. Moreover, NCAM‐dependent neurite outgrowth and branching were inhibited in neurons isolated from a transgenic mouse model of NCAM shedding. These results suggest that regulated metalloprotease‐induced ectodomain shedding of NCAM down‐regulates neurite branching and neurite outgrowth. Thus, increased levels of soluble NCAM in schizophrenic brain have the potential to impair neuronal connectivity. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

10.
ADAM proteases are type I transmembrane proteins with extracellular metalloprotease domains. As for most ADAM family members, ADAM8 (CD156a, MS2) is involved in ectodomain shedding of membrane proteins and is linked to inflammation and neurodegeneration. To identify potential substrates released under these pathologic conditions, we screened 10-mer peptides representing amino acid sequences from extracellular domains of various membrane proteins using the ProteaseSpot system. A soluble ADAM8 protease containing a pro- and metalloprotease domain was expressed in E. coli and purified as active protease owing to autocatalytic prodomain removal. From 34 peptides tested in the peptide cleavage assay, significant cleavage by soluble ADAM8 was observed for 14 peptides representing membrane proteins with functions in inflammation and neurodegeneration, among them the beta-amyloid precursor protein (APP). The in vivo relevance of the ProteaseSpot method was confirmed by cleavage of full-length APP with ADAM8 in human embryonic kidney 293 cells expressing tagged APP. ADAM8 cleaved APP with similar efficiency as ADAM10, whereas the inactive ADAM8 mutant did not. Exchanging amino acids at defined positions in the cleavage sequence of myelin basic protein (MBP) revealed sequence criteria for ADAM8 cleavage. Taken together, the results allowed us to identify novel candidate substrates that could be cleaved by ADAM8 in vivo under pathologic conditions.  相似文献   

11.
A disintegrin and metalloprotease 10 (ADAM10) is a zinc protease that mediates ectodomain shedding of numerous receptors including Notch and members of the amyloid precursor protein family (APP, APLP1, and APLP2). Ectodomain shedding frequently activates a process called regulated intramembrane proteolysis (RIP) that links cellular events with gene regulation. To characterize ADAM10 in kidney and in opossum kidney proximal tubule (OKP) cells, we performed indirect immunofluorescence microscopy and immunoblotting of renal membrane fractions using specific antibodies. These studies show that ADAM10 and APLP2 are coexpressed in the proximal tubule and in OKP cells. To study the role of ADAM10 activity in the proximal tubule, we stably overexpressed wild-type ADAM10 or an inactive mutant ADAM10 in OKP cells. We found a direct correlation between the amount of active ADAM10 expressed and 1) the amount of APLP2 ectodomain shed into the culture supernatant and 2) the amount of Na(+)/H(+) exchanger 3 (NHE3) and megalin mRNA and protein expressed compared with control proteins. To establish a link between ADAM10-mediated shedding of APLP2 and the effect on NHE3 and megalin mRNA expression we performed RNA interference experiments using APLP2-specific short hairpin RNA (shRNA) in OKP cells. Cells expressing the APLP2 shRNA showed >80% knock down of APLP2 protein and mRNA as well as 60-70% reduction in NHE3 protein and mRNA. Levels of megalin and Na-K-ATPase protein and mRNA were not changed. These studies show 1) ADAM10 and APLP2 are expressed in proximal tubule cells and, 2) ADAM10 activity has a pronounced effect on expression of specific brush-border proteins. We postulate that ADAM10 and APLP2 may represent elements of a here-to-fore unknown signaling pathway in proximal tubule that link events at the brush border with control of gene expression.  相似文献   

12.
ADAM17 (a disintegrin and metalloprotease)-deficient murine fibroblasts stably transfected with proTNF cDNA release significant amounts of biologically active soluble TNF. The enzyme responsible for this activity is a membrane protein that hydrolyzes the peptide bond Ala76:Val77 within proTNF. Its activity is inhibited by 1,10-phenantroline and GM6001, insusceptible to TIMP-2 (tissue inhibitor of metalloproteinases-2), and stimulated by ionomycin. These characteristics match ADAM10. The moderate silencing of ADAM10 by shRNA resulted in a significant inhibition of TNF shedding. There was no correlation between the level of ADAM10 expression and the presence of active ADAM17. Our results indicate that ADAM10 may function as the TNF sheddase in cells which lack ADAM17 activity.  相似文献   

13.
Protein ectodomain shedding, the proteolytic release of the extracellullar domain of membrane-tethered proteins, can dramatically affect the function of cell surface receptors, growth factors, cytokines, and other proteins. In this study, we evaluated the activities involved in ectodomain shedding of p75NTR, a neurotrophin receptor with critical roles in neuronal differentiation and survival. p75NTR is shed in a variety of cell types, including dorsal root ganglia cells and PC12 cells. In Chinese hamster ovary cells, inhibitors of the MEK/ERK and p38 MAP kinase pathways uncovered distinct signaling pathways required for the constitutive and stimulated shedding of p75NTR. Stimulated p75NTR shedding is abrogated in M2 mutant Chinese hamster ovary cells that lack functional tumor necrosis factor-alpha converting enzyme (TACE, also referred to as ADAM17) and in cells isolated from adam17-/- mice, but not in cells from adam9/12/15-/- or adam10-/- mice. Stimulated p75(NTR) shedding is strongly reduced by deletion of 15 amino acid residues in its extracellular membrane-proximal stalk domain. However, similar to other shed proteins, point mutations and overlapping shorter deletions within this region have little or no effect on shedding. Because ectodomain shedding of p75NTR releases a soluble ectodomain and could also be a prerequisite for its regulated intramembrane proteolysis, these findings may have important implications for the functional regulation of p75NTR.  相似文献   

14.
Tumor necrosis factor-alpha (TNFalpha), a potent pro-inflammatory cytokine, is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-alpha converting enzyme (TACE; a disintegrin and metalloprotease17; ADAM17) is known to have a key role in the ectodomain shedding of TNFalpha in several cell types. However, because purified ADAMs 9, 10, and 19 can also cleave a peptide corresponding to the TNFalpha cleavage site in vitro, these enzymes are considered to be candidate TNFalpha sheddases as well. In this study we used cells lacking ADAMs 9, 10, 17 (TACE), or 19 to address the relative contribution of these ADAMs to TNFalpha shedding in cell-based assays. Our results corroborate that ADAM17, but not ADAM9, -10, or -19, is critical for phorbol ester- and pervanadate-stimulated release of TNFalpha in mouse embryonic fibroblasts. However, overexpression of ADAM19 increased the constitutive release of TNFalpha, whereas overexpression of ADAM9 or ADAM10 did not. This suggests that ADAM19 may contribute to TNFalpha shedding, especially in cells or tissues where it is highly expressed. Furthermore, we used mutagenesis of TNFalpha to explore which domains are important for its stimulated processing by ADAM17. We found that the cleavage site of TNFalpha is necessary and sufficient for cleavage by ADAM17. In addition, the ectodomain of TNFalpha makes an unexpected contribution to the selective cleavage of TNFalpha by ADAM17: it prevents one or more other enzymes from cleaving TNFalpha following PMA stimulation. Thus, selective stimulated processing of TNFalpha by ADAM17 in cells depends on the presence of an appropriate cleavage site as well as the inhibitory role of the TNF ectodomain toward other enzymes that can process this site.  相似文献   

15.
The cellular prion protein (PrP(c)) is physiologically cleaved in the middle of its 106-126 amino acid neurotoxic region at the 110/111 downward arrow112 peptidyl bond, yielding an N-terminal fragment referred to as N1. We recently demonstrated that two disintegrins, namely ADAM10 and ADAM17 (TACE, tumor necrosis factor alpha converting enzyme) participated in both constitutive and protein kinase C-regulated generation of N1, respectively. These proteolytic events were strikingly reminiscent of those involved in the so-called "alpha-secretase pathway" that leads to the production of secreted sAPPalpha from betaAPP. We show here, by transient and stable transfection analyses, that ADAM9 also participates in the constitutive secretion of N1 in HEK293 cells, TSM1 neurons, and mouse fibroblasts. Decreasing endogenous ADAM9 expression by an antisense approach drastically reduces both N1 and sAPPalpha recoveries. However, we establish that ADAM9 was unable to increase N1 and sAPPalpha productions after transient transfection in fibroblasts depleted of ADAM10. Accordingly, ADAM9 is unable to cleave a fluorimetric substrate of membrane-bound alpha-secretase activity in ADAM10(-/-) fibroblasts. However, we establish that co-expression of ADAM9 and ADAM10 in ADAM10-deficient fibroblasts leads to enhanced membrane-bound and released fluorimetric substrate hydrolyzing activity when compared with that observed after ADAM10 cDNA transfection alone in ADAM10(-/-) cells. Interestingly, we demonstrate that shedded ADAM10 displays the ability to cleave endogenous PrP(c) in fibroblasts. Altogether, these data provide evidence that ADAM9 is an important regulator of the physiological processing of PrP(c) and betaAPP but that this enzyme acts indirectly, likely by contributing to the shedding of ADAM10. ADAM9 could therefore represent, besides ADAM10, another potential therapeutic target to enhance the breakdown of the 106-126 and Abeta toxic domains of the prion and betaAPP proteins.  相似文献   

16.
A disintegrin and metalloproteinase (ADAM) 10 is a type I transmembrane glycoprotein responsible for the ectodomain shedding of a range of proteins including the amyloid precursor protein implicated in Alzheimer's disease. In this study we demonstrate that ADAM10 itself is subject to shedding by one or more ADAMs. Expression of epitope-tagged wild-type ADAM10 in SH-SY5Y cells enabled the detection of a soluble ectodomain in conditioned medium. Shedding of the ADAM10 ectodomain was inhibited by a known ADAM inhibitor with a reciprocal accumulation of the full-length mature protein in both cell lysates and extracellular membrane vesicles. Shedding was also stimulated by phorbol ester treatment of cells. A glycosylphosphatidylinositol-anchored form of ADAM10 lacking the cytosolic, transmembrane and α-helical juxtamembrane regions of the wild-type protein was shed in a similar manner. Furthermore, a truncated soluble ADAM10 construct, although correctly post-translationally processed and catalytically active against a synthetic peptide substrate, was incapable of shedding cell-associated amyloid precursor protein. Finally, we show that ADAM9 is, at least in part, responsible for the ectodomain shedding of ADAM10. In conclusion, this is a new mechanism by which levels of ADAM10 are regulated and may have implications in a range of human diseases including Alzheimer's disease.  相似文献   

17.
Proteolytic ectodomain release, a process known as "shedding", has been recognised as a key mechanism for regulating the function of a diversity of cell surface proteins. A Disintegrin And Metalloproteinases (ADAMs) have emerged as the major proteinase family that mediates ectodomain shedding. Dysregulation of ectodomain shedding is associated with autoimmune and cardiovascular diseases, neurodegeneration, infection, inflammation and cancer. Therefore, ADAMs are increasingly regarded as attractive targets for novel therapies. ADAM10 and its close relative ADAM17 (TNF-alpha converting enzyme (TACE)) have been studied in particular in the context of ectodomain shedding and have been demonstrated as key molecules in most of the shedding events characterised to date. Whereas the level of expression of ADAM10 may be of importance in cancer and neurodegenerative disorders, ADAM17 mainly coordinates pro- and anti-inflammatory activities during immune response. Despite the high therapeutical potential of ADAM inhibition, all clinical trials using broad-spectrum metalloprotease inhibitors have failed so far. This review will cover the emerging roles of both ADAM10 and ADAM17 in the regulation of major physiological and developmental pathways and will discuss the suitability of specifically modulating the activities of both proteases as a feasible way to inhibit inflammatory states, cancer and neurodegeneration.  相似文献   

18.
There is an exciting increase of evidence that members of the disintegrin and metalloprotease (ADAM) family critically regulate cell adhesion, migration, development and signalling. ADAMs are involved in “ectodomain shedding” of various cell surface proteins such as growth factors, receptors and their ligands, cytokines, and cell adhesion molecules. The regulation of these proteases is complex and still poorly understood. Studies in ADAM knockout mice revealed their partially redundant roles in angiogenesis, neurogenesis, tissue development and cancer. ADAMs usually trigger the first step in regulated intramembrane proteolysis leading to activation of intracellular signalling pathways and the release of functional soluble ectodomains.  相似文献   

19.
CX3CL1 (fractalkine) and CXCL16 are unique members of the chemokine family because they occur not only as soluble, but also as membrane-bound molecules. Expressed as type I transmembrane proteins, the ectodomain of both chemokines can be proteolytically cleaved from the cell surface, a process known as shedding. Our previous studies showed that the disintegrin and metalloproteinase 10 (ADAM10) mediates the largest proportion of constitutive CX3CL1 and CXCL16 shedding, but is not involved in the phorbolester-induced release of the soluble chemokines (inducible shedding). In this study, we introduce the calcium-ionophore ionomycin as a novel, very rapid, and efficient inducer of CX3CL1 and CXCL16 shedding. By transfection in COS-7 cells and ADAM10-deficient murine embryonic fibroblasts combined with the use of selective metalloproteinase inhibitors, we demonstrate that the inducible generation of soluble forms of these chemokines is dependent on ADAM10 activity. Analysis of the C-terminal cleavage fragments remaining in the cell membrane reveals multiple cleavage sites used by ADAM10, one of which is preferentially used upon stimulation with ionomycin. In adhesion studies with CX3CL1-expressing ECV-304 cells and cytokine-stimulated endothelial cells, we demonstrate that induced CX3CL1 shedding leads to the release of bound monocytic cell lines and PBMC from their cellular substrate. These data provide evidence for an inducible release mechanism via ADAM10 potentially important for leukocyte diapedesis.  相似文献   

20.
Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase   总被引:9,自引:0,他引:9  
The putative alpha-secretase cleaves the amyloid precursor protein (APP) of Alzheimer's disease in the middle of the amyloid beta peptide (Abeta) domain. It is generally thought that the alpha-secretase pathway mitigates Abeta formation in the normal brain. Several studies have suggested that ADAM9, ADAM10, and ADAM17 are candidate alpha-secretases belonging to the ADAM (a disintegrin and metalloprotease) family, which are membrane-anchored cell surface proteins. In this comparative study of ADAM9, ADAM10, and ADAM17, we examined the physiological role of ADAMs by expressing these ADAMs in COS-7 cells, and both "constitutive" and "regulated" alpha-secretase activities of these ADAMs were determined. We tried to suppress the expression of these ADAMs in human glioblastoma A172 cells, which contain large amounts of endogenous alpha-secretase, by lipofection of the double-stranded RNA (dsRNA) encoding each of these ADAMs. The results indicate that ADAM9, ADAM10, and ADAM17 catalyze alpha-secretory cleavage and therefore act as alpha-secretases in A172 cells. This is the first report that to suggest the endogenous alpha-secretase is composed of several ADAM enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号