首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The betacellulin precursor (pro-BTC) is a novel substrate for ADAM10-mediated ectodomain shedding. In this report, we investigated the ability of novel physiologically relevant stimuli, including G-protein coupled receptor (GPCR) agonists and reactive oxygen species (ROS), to stimulate pro-BTC shedding. We found that in breast adenocarcinoma MCF7 cells overexpressing pro-BTC, hydrogen peroxide (H2O2) was a powerful stimulator of ectodomain shedding. The stimulation of pro-BTC shedding by H2O2 was blocked by the broad-spectrum metalloprotease inhibitor TAPI-0 but was still functional in ADAM17 (TACE)-deficient stomach epithelial cells indicating the involvement of a distinct metalloprotease. H2O2-induced pro-BTC shedding was blocked by co-culturing cells in the anti-oxidant N-acetyl-L-cysteine but was unaffected by culture in calcium-deficient media. By contrast, calcium ionophore, which is a previously characterized activator of pro-BTC shedding, was sensitive to calcium depletion but was unaffected by co-culture with the anti-oxidant, identifying a clear distinction between these stimuli. We found that in vascular smooth muscle cells overexpressing pro-BTC, the GPCR agonist endothelin-1 (ET-1) was a strong inducer of ectodomain shedding. This was blocked by a metalloprotease inhibitor and by overexpression of catalytically inactive E385A ADAM10. However, overexpression of wild-type ADAM10 or ADAM17 led to an increase in ET-1-induced pro-BTC shedding providing evidence for an involvement of both enzymes in this process. This study identifies ROS and ET-1 as two novel inducers of pro-BTC shedding and lends support to the notion of activated shedding occurring under the control of physiologically relevant stimuli.  相似文献   

2.
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.  相似文献   

3.
The membrane type 1-matrix metalloproteinase (MT1-MMP) is a membrane-anchored protease that its entire ectodomain is shed from the cell surface. Here we show that in HT1080 cells MT1-MMP is shed as two soluble forms of approximately 52 and approximately 50kDa. Analyses in purified HT1080 plasma membranes show that release of these species is a two-step time-dependent process that is mediated by integral membrane metalloprotease(s). Differential sensitivity to TIMP-3 inhibition of the shedding process suggests that the second cleavage step leading to the formation of the 50-kDa soluble species is mediated by an ADAM. We also show that shedding of MT1-MMP is independent of its partition into lipid rafts because both wild type and glycosylphosphatidylinositol (GPI)-anchored MT1-MMP are shed. These studies provide new insights into the process of MT1-MMP ectodomain shedding, which may regulate pericellular proteolysis.  相似文献   

4.
The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.  相似文献   

5.
The ADAM (a disintegrin and metalloprotease) protein family uniquely exhibits both catalytic and adhesive properties. In the well-defined process of ectodomain shedding, ADAMs transform latent, cell-bound substrates into soluble, biologically active derivatives to regulate a spectrum of normal and pathological processes. In contrast, the integrin ligand properties of ADAMs are not fully understood. Emerging models posit that ADAM–integrin interactions regulate shedding activity by localizing or sequestering the ADAM sheddase. Interestingly, 8 of the 21 human ADAMs are predicted to be catalytically inactive. Unlike their catalytically active counterparts, integrin recognition of these “dead” enzymes has not been largely reported. The present study delineates the integrin ligand properties of a group of non-catalytic ADAMs. Here we report that human ADAM11, ADAM23, and ADAM29 selectively support integrin α4-dependent cell adhesion. This is the first demonstration that the disintegrin-like domains of multiple catalytically inactive ADAMs are ligands for a select subset of integrin receptors that also recognize catalytically active ADAMs.  相似文献   

6.
Exosomes are small membrane vesicles derived from intracellular multivescicular bodies (MVBs) that can undergo constitutive and regulated secretion from cells. Exosomes can also secrete soluble proteins through metalloprotease-dependent ectodomain shedding. In this study, we sought to determine whether ErbB1 receptors are present within exosomes isolated from the human keratinocyte cell line, HaCaT, and whether exosome-associated ErbB1 receptors can undergo further proteolytic processing. We show that full-length transmembrane ErbB1 is secreted in HaCaT exosomes. EGF treatment and calcium flux stimulated the release of phosphorylated ErbB1 in exosomes but only ligand-stimulated release was blocked by the ErbB1 kinase inhibitor, AG1478, indicating that ligand-dependent ErbB1 receptor activation can initiate ErbB1 secretion into exosomes. In addition, other immunoreactive but truncated ErbB1 isoforms were detected in exosomes suggestive of additional proteolytic processing. We demonstrate that cellular and exosomal ErbB1 receptors can undergo ectodomain shedding to generate soluble N-terminal ectodomains and membrane-associated C-terminal remnant fragments (CTFs). ErbB1 shedding was activated by calcium flux and the metalloprotease activator APMA (4-aminophenylmercuric acetate) and was blocked by a metalloprotease inhibitor (GM6001). Soluble ErbB1 ectodomains shed into conditioned medium retained the ability to bind exogenous ligand. Our results provide new insights into the proteolysis, trafficking and fate of ErbB1 receptors and suggest that the novel ErbB1 isoforms may have functions distinct from the plasma membrane receptor.  相似文献   

7.
Tumor necrosis factor-alpha (TNFalpha), a potent pro-inflammatory cytokine, is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-alpha converting enzyme (TACE; a disintegrin and metalloprotease17; ADAM17) is known to have a key role in the ectodomain shedding of TNFalpha in several cell types. However, because purified ADAMs 9, 10, and 19 can also cleave a peptide corresponding to the TNFalpha cleavage site in vitro, these enzymes are considered to be candidate TNFalpha sheddases as well. In this study we used cells lacking ADAMs 9, 10, 17 (TACE), or 19 to address the relative contribution of these ADAMs to TNFalpha shedding in cell-based assays. Our results corroborate that ADAM17, but not ADAM9, -10, or -19, is critical for phorbol ester- and pervanadate-stimulated release of TNFalpha in mouse embryonic fibroblasts. However, overexpression of ADAM19 increased the constitutive release of TNFalpha, whereas overexpression of ADAM9 or ADAM10 did not. This suggests that ADAM19 may contribute to TNFalpha shedding, especially in cells or tissues where it is highly expressed. Furthermore, we used mutagenesis of TNFalpha to explore which domains are important for its stimulated processing by ADAM17. We found that the cleavage site of TNFalpha is necessary and sufficient for cleavage by ADAM17. In addition, the ectodomain of TNFalpha makes an unexpected contribution to the selective cleavage of TNFalpha by ADAM17: it prevents one or more other enzymes from cleaving TNFalpha following PMA stimulation. Thus, selective stimulated processing of TNFalpha by ADAM17 in cells depends on the presence of an appropriate cleavage site as well as the inhibitory role of the TNF ectodomain toward other enzymes that can process this site.  相似文献   

8.
The ADAM family of disintegrin metalloproteases plays important roles in "ectodomain shedding," the process by which biologically active, soluble forms of cytokines, growth factors, and their receptors are released from membrane-bound precursors. Whereas ADAM8, ADAM15, and MDC-L (ADAM28) are expressed in specific cell types and tissues, their in vivo functions and substrates are not known. By screening a library of synthetic peptides as potential substrates, we show that soluble recombinant forms of these enzymes have similar proteolytic substrate specificity, clearly distinct from that of ADAM17 (TNFalpha-converting enzyme). A number of tumor necrosis factor (TNF) family proteins and CD23 were screened as potential substrates for ectodomain cleavage. We found that ADAM8, ADAM15, and MDC-L, but not ADAM17, catalyzed ectodomain shedding of CD23, the low affinity IgE receptor. ADAM8-dependent, soluble CD23 release required proteolytically active ADAM8, and a physical association of ADAM8 was observed with the membrane-bound form of CD23. The ADAM8-dependent release of sCD23 and the endogenous release from B cell lines could be similarly inhibited by a hydroxamic acid, metalloprotease inhibitor compound. We conclude that ADAM8 could contribute to ectodomain shedding of CD23 and may thus be a potential target for therapeutic intervention in allergy and inflammation.  相似文献   

9.
Zinc-dependent metalloproteases can mediate the shedding of the extracellular domain of many unrelated transmembrane proteins from the cell surface. In most instances, this process, also known as ectodomain shedding, is regulated via protein kinase C (PKC). The tumor necrosis factor alpha-converting enzyme (TACE) was the first protease involved in regulated protein ectodomain shedding identified. Although TACE belongs to the family of metalloprotease-disintegrins, few members of this family have been shown to participate in regulated ectodomain shedding. In fact, the phenotype of tace-/- cells and that of Chinese hamster ovary cell mutants defective in ectodomain shedding points to the existence of a common PKC-activated ectodomain shedding system, whose proteolytic component is TACE, that acts on a variety of transmembrane proteins. Examples of these proteins include the Alzheimer's disease-related protein beta-amyloid precursor protein (betaAPP) and the transmembrane growth factors protransforming growth factor-alpha (pro-TGF-alpha) and, as shown in this report, proheparin-binding epidermal growth factor-like growth factor (pro-HB-EGF). Here we show that the mercurial compound 4-aminophenylmercuric acetate (APMA), frequently used to activate in vitro recombinant matrix metalloproteases, is an activator of the shedding of betaAPP, pro-HB-EGF, and pro-TGF-alpha. Treatment of tace-/- cells or Chinese hamster ovary shedding-defective mutants with APMA activates the cleavage of pro-TGF-alpha but not that of pro-HB-EGF or betaAPP, indicating that APMA activates TACE and also a previously unacknowledged proteolytic activity specific for pro-TGF-alpha. Characterization of this proteolytic activity indicates that it acts on pro-TGF-alpha located at the cell surface and that it is a metalloprotease active in cells defective in furin activity. In summary, treatment of shedding-defective cell lines with APMA unveils the existence of a metalloprotease activity alternative to TACE with the ability to specifically shed the ectodomain of pro-TGF-alpha.  相似文献   

10.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane MMP shown to play a critical role in normal development and in malignant processes. Emerging evidence indicates that MT1-MMP is regulated by a process of ectodomain shedding. Active MT1-MMP undergoes autocatalytic processing on the cell surface, leading to the formation of an inactive 44-kDa fragment and release of the entire catalytic domain. Analysis of the released MT1-MMP forms in various cell types revealed a complex pattern of shedding involving two major fragments of 50 and 18 kDa and two minor species of 56 and 31-35 kDa. Protease inhibitor studies and a catalytically inactive MT1-MMP mutant revealed both autocatalytic (18 kDa) and non-autocatalytic (56, 50, and 31-35 kDa) shedding mechanisms. Purification and sequencing of the 18-kDa fragment indicated that it extends from Tyr(112) to Ala(255). Structural and sequencing data indicate that shedding of the 18-kDa fragment is initiated at the Gly(284)-Gly(285) site, followed by cleavage between the conserved Ala(255) and Ile(256) residues near the conserved methionine turn, a structural feature of the catalytic domain of all MMPs. Consistently, a recombinant 18-kDa fragment had no catalytic activity and did not bind TIMP-2. Thus, autocatalytic shedding evolved as a specific mechanism to terminate MT1-MMP activity on the cell surface by disrupting enzyme integrity at a vital structural site. In contrast, functional data suggest that the non-autocatalytic shedding generates soluble active MT1-MMP species capable of binding TIMP-2. These studies suggest that ectodomain shedding regulates the pericellular and extracellular activities of MT1-MMP through a delicate balance of active and inactive enzyme-soluble fragments.  相似文献   

11.
ADAMs are membrane-anchored glycoproteins with functions in fertilization, heart development, neurogenesis, and protein ectodomain shedding. Here we report an evaluation of the catalytic activity of recombinantly expressed soluble forms of ADAM19, a protein that is essential for cardiovascular morphogenesis. Proteolytic activity of soluble forms of ADAM19 was first demonstrated by their autocatalytic removal of a purification tag (Myc-His) and their ability to cleave myelin basic protein and the insulin B chain. The metalloprotease activity of ADAM19 is sensitive to the hydroxamic acid-type metalloprotease inhibitor BB94 (batimastat) but not to tissue inhibitors of metalloproteases (TIMPs) 1-3. Moreover, ADAM19 cleaves peptides corresponding to the known cleavage sites of tumor necrosis factor-alpha (TNF-alpha), TNF-related activation-induced cytokine (TRANCE, also referred to as osteoprotegerin ligand), and kit ligand-1 (KL-1) in vitro. Although ADAM19 is not required for shedding of TNFalpha and TRANCE in mouse embryonic fibroblasts, its overexpression in COS-7 cells results in strongly increased TRANCE shedding. This suggests a potential role for ADAM19 in shedding TRANCE in cells where both molecules are highly expressed, such as in osteoblasts. Interestingly, our results also indicate that ADAM19 can function as a negative regulator of KL-1 shedding in both COS-7 cells and mouse embryonic fibroblasts, instead of acting directly on KL-1. The identification of potential in vitro substrates offers the basis for further functional studies of ADAM19 in cells and in mice.  相似文献   

12.
ADAM proteases are type I transmembrane proteins with extracellular metalloprotease domains. As for most ADAM family members, ADAM8 (CD156a, MS2) is involved in ectodomain shedding of membrane proteins and is linked to inflammation and neurodegeneration. To identify potential substrates released under these pathologic conditions, we screened 10-mer peptides representing amino acid sequences from extracellular domains of various membrane proteins using the ProteaseSpot system. A soluble ADAM8 protease containing a pro- and metalloprotease domain was expressed in E. coli and purified as active protease owing to autocatalytic prodomain removal. From 34 peptides tested in the peptide cleavage assay, significant cleavage by soluble ADAM8 was observed for 14 peptides representing membrane proteins with functions in inflammation and neurodegeneration, among them the beta-amyloid precursor protein (APP). The in vivo relevance of the ProteaseSpot method was confirmed by cleavage of full-length APP with ADAM8 in human embryonic kidney 293 cells expressing tagged APP. ADAM8 cleaved APP with similar efficiency as ADAM10, whereas the inactive ADAM8 mutant did not. Exchanging amino acids at defined positions in the cleavage sequence of myelin basic protein (MBP) revealed sequence criteria for ADAM8 cleavage. Taken together, the results allowed us to identify novel candidate substrates that could be cleaved by ADAM8 in vivo under pathologic conditions.  相似文献   

13.
The neural cell adhesion molecule "close homologue of L1," termed CHL1, has functional importance in the nervous system. CHL1 is expressed as a transmembrane protein of 185 kDa, and ectodomain shedding releases soluble fragments relevant for its physiological function. Here we describe that ADAM8, a member of the family of metalloprotease disintegrins cleaves a CHL1-Fc fusion protein in vitro at two sites corresponding to release of the extracellular domain of CHL1 in fibronectin (FN) domains II (125 kDa) and V (165 kDa), inhibited by batimastat (BB-94). Cleavage of CHL1-Fc in the 125-kDa fragment was not detectable under non-reducing conditions arguing that cleavage resulting in the 165-kDa fragment is more relevant in releasing soluble CHL1 in vivo. In cells transfected with full-length ADAM8, membrane proximal cleavage of CHL1 was similar and not stimulated by phorbol ester 12-O-tetradecanoylphorbol-13-acetate and pervanadate. No cleavage of CHL1 was observed in cells expressing either inactive ADAM8 with a Glu330 to Gln exchange (EQ-A8), or active ADAM10 and ADAM17. Consequently, processing of CHL1 was hardly detectable in brain extracts of ADAM8-deficient mice but enhanced in a neurodegenerative mouse mutant. CHL1 processed by ADAM8 in supernatants of COS-7 cells and in co-culture with cerebellar granule neurons was very potent in stimulating neurite outgrowth and suppressing neuronal cell death, not observed in cells co-transfected with CHL1/EQ-A8, CHL1/ADAM10, or CHL1/ADAM17. Taken together, we propose that ADAM8 plays an important role in physiological and pathological cell interactions by a specific release of functional CHL1 from the cell surface.  相似文献   

14.
Gamma-protocadherins (Pcdh gamma) are type I transmembrane proteins, which are most notably expressed in the nervous system. They are enriched at synapses and involved in synapse formation, specification, and maintenance. In this study, we show that Pcdh gamma C3 and Pcdh gamma B4 are specifically cleaved within their ectodomains by the disintegrin and metalloprotease ADAM10. Analysis of ADAM10-deficient fibroblasts and embryos, inhibitor studies, as well as RNA interference-mediated down-regulation demonstrated that ADAM10 is not only responsible for the constitutive but also for the regulated shedding of these proteins in fibroblasts and in neuronal cells. In contrast to N-cadherin shedding, which was activated by N-methyl-D-aspartic acid receptor activation in neuronal cells, Pcdh gamma shedding was induced by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate stimulation, suggesting differential regulation mechanisms of cadherin-mediated functions at synapses. Cell aggregation assays in the presence or absence of metalloprotease inhibitors strongly suggest that the ectodomain shedding events modulate the cell adhesion role of Pcdh gamma. The identification of ADAM10 as the protease responsible for constitutive and regulated Pcdh gamma shedding may therefore provide new insight into the regulation of Pcdh gamma functions.  相似文献   

15.
EphrinA/EphA‐dependent axon repulsion is crucial for synaptic targeting in developing neurons but downstream molecular mechanisms remain obscure. Here, it is shown that ephrinA5/EphA3 triggers proteolysis of the neural cell adhesion molecule (NCAM) by the metalloprotease a disintegrin and metalloprotease (ADAM)10 to promote growth cone collapse in neurons from mouse neocortex. EphrinA5 induced ADAM10 activity to promote ectodomain shedding of polysialic acid‐NCAM in cortical neuron cultures, releasing a ~ 250 kDa soluble fragment consisting of most of its extracellular region. NCAM shedding was dependent on ADAM10 and EphA3 kinase activity as shown in HEK293T cells transfected with dominant negative ADAM10 and kinase‐inactive EphA3 (K653R) mutants. Purified ADAM10 cleaved NCAM at a sequence within the E‐F loop of the second fibronectin type III domain (Leu671‐Lys672/Ser673‐Leu674) identified by mass spectrometry. Mutations of NCAM within the ADAM10 cleavage sequence prevented EphA3‐induced shedding of NCAM in HEK293T cells. EphrinA5‐induced growth cone collapse was dependent on ADAM10 activity, was inhibited in cortical cultures from NCAM null mice, and was rescued by WT but not ADAM10 cleavage site mutants of NCAM. Regulated proteolysis of NCAM through the ephrin5/EphA3/ADAM10 mechanism likely impacts synapse development, and may lead to excess NCAM shedding when disrupted, as implicated in neurodevelopmental disorders such as schizophrenia.

  相似文献   


16.
The membrane-anchored metalloproteinase a disintegrin and metalloprotease 10 (ADAM10) is required for shedding of membrane proteins such as EGF, betacellulin, the amyloid precursor protein, and CD23 from cells. ADAM10 is constitutively active and can be rapidly and post-translationally enhanced by several stimuli, yet little is known about the underlying mechanism. Here, we use ADAM10-deficient cells transfected with wild type or mutant ADAM10 to address the role of its cytoplasmic and transmembrane domain in regulating ADAM10-dependent protein ectodomain shedding. We report that the cytoplasmic domain of ADAM10 negatively regulates its constitutive activity through an ER retention motif but is dispensable for its stimulated activity. However, chimeras with the extracellular domain of ADAM10 and the transmembrane domain of ADAM17 with or without the cytoplasmic domain of ADAM17 show reduced stimulated shedding of the ADAM10 substrate betacellulin, whereas the ionomycin-stimulated shedding of the ADAM17 substrates CD62-L and TGFα is not affected. Moreover, we show that influx of extracellular calcium activates ADAM10 but is not essential for its activation by APMA and BzATP. Finally, the rapid stimulation of ADAM10 is not significantly affected by incubation with proprotein convertase inhibitors for up to 8 h, arguing against a major role of increased prodomain removal in the rapid stimulation of ADAM10. Thus, the cytoplasmic domain of ADAM10 negatively influences constitutive shedding through an ER retention motif, whereas the cytoplasmic domain and prodomain processing are not required for the rapid activation of ADAM10-dependent shedding events.  相似文献   

17.
Numerous transmembrane proteins, including the blood pressure regulating angiotensin converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein (APP), are proteolytically shed from the plasma membrane by metalloproteases. We have used an antisense oligonucleotide (ASO) approach to delineate the role of ADAM10 and tumour necrosis factor-alpha converting enzyme (TACE; ADAM17) in the ectodomain shedding of ACE and APP from human SH-SY5Y cells. Although the ADAM10 ASO and TACE ASO significantly reduced (> 81%) their respective mRNA levels and reduced the alpha-secretase shedding of APP by 60% and 30%, respectively, neither ASO reduced the shedding of ACE. The mercurial compound 4-aminophenylmercuric acetate (APMA) stimulated the shedding of ACE but not of APP. The APMA-stimulated secretase cleaved ACE at the same Arg-Ser bond in the juxtamembrane stalk as the constitutive secretase but was more sensitive to inhibition by a hydroxamate-based compound. The APMA-activated shedding of ACE was not reduced by the ADAM10 or TACE ASOs. These results indicate that neither ADAM10 nor TACE are involved in the shedding of ACE and that APMA, which activates a distinct ACE secretase, is the first pharmacological agent to distinguish between the shedding of ACE and APP.  相似文献   

18.
Stautz D  Wewer UM  Kveiborg M 《PloS one》2012,7(5):e37628
A recently identified breast cancer-associated mutation in the metalloprotease ADAM12 alters a potential dileucine trafficking signal, which could affect protein processing and cellular localization. ADAM12 belongs to the group of A Disintegrin And Metalloproteases (ADAMs), which are typically membrane-associated proteins involved in ectodomain shedding, cell-adhesion, and signaling. ADAM12 as well as several members of the ADAM family are over-expressed in various cancers, correlating with disease stage. Three breast cancer-associated somatic mutations were previously identified in ADAM12, and two of these, one in the metalloprotease domain and another in the disintegrin domain, were investigated and found to result in protein misfolding, retention in the secretory pathway, and failure of zymogen maturation. The third mutation, p.L792F in the ADAM12 cytoplasmic tail, was not investigated, but is potentially significant given its location within a di-leucine motif, which is recognized as a potential cellular trafficking signal. The present study was motivated both by the potential relevance of this documented mutation to cancer, as well as for determining the role of the di-leucine motif in ADAM12 trafficking. Expression of ADAM12 p.L792F in mammalian cells demonstrated quantitatively similar expression levels and zymogen maturation as wild-type (WT) ADAM12, as well as comparable cellular localizations. A cell surface biotinylation assay demonstrated that cell surface levels of ADAM12 WT and ADAM12 p.L792F were similar and that internalization of the mutant occurred at the same rate and extent as for ADAM12 WT. Moreover, functional analysis revealed no differences in cell proliferation or ectodomain shedding of epidermal growth factor (EGF), a known ADAM12 substrate between WT and mutant ADAM12. These data suggest that the ADAM12 p.L792F mutation is unlikely to be a driver (cancer causing)-mutation in breast cancer.  相似文献   

19.
A disintegrin and metalloprotease 12 (ADAM12/meltrin alpha) is a key enzyme implicated in the ectodomain shedding of membrane-anchored heparin-binding epidermal growth factor (EGF)-like growth factor (proHB-EGF)-dependent epidermal growth factor receptor (EGFR) transactivation. However, the activation mechanisms of ADAM12 are obscure. To determine how ADAM12 is activated, we screened proteins that bind to the cytoplasmic domain of ADAM12 using a yeast two-hybrid system and identified a protein called PACSIN3 that contains a Src homology 3 domain. An analysis of interactions between ADAM12 and PACSIN3 using glutathione S-transferase fusion protein revealed that a proline-rich region (amino acid residues 829-840) of ADAM12 was required to bind PACSIN3. Furthermore, co-immunoprecipitation and co-localization analyses of ADAM12 and PACSIN3 proteins also revealed their interaction in mammalian cells expressing both of them. The overexpression of PACSIN3 in HT1080 cells enhanced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced proHB-EGF shedding. Furthermore, knockdown of endogenous PACSIN3 by small interfering RNA in HT1080 cells significantly attenuated the shedding of proHB-EGF induced by TPA and angiotensin II. Our data indicate that PACSIN3 has a novel function as an up-regulator in the signaling of proHB-EGF shedding induced by TPA and angiotensin II.  相似文献   

20.
Placental leucine aminopeptidase (P-LAP), a type-II transmembrane protease responsible for oxytocin degradation during pregnancy, is converted to a soluble form through proteolytic cleavage. The goal of this study was to determine the nature of the P-LAP secretase activity. The hydroxamic acid-based metalloprotease inhibitors GM6001 and ONO-4817 as well as the TNF-alpha protease inhibitor-2 (TAPI-2) reduced P-LAP release, while tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, which are matrix metalloproteinase inhibitors, had no effect on P-LAP release in Chinese hamster ovary (CHO) cells stably overexpressing P-LAP, thus indicating possible involvement of ADAM (a disintegrin and metalloproteinase) members in P-LAP shedding. Furthermore, overexpression of ADAM9 and ADAM12 increased P-LAP release in P-LAP-CHO transfectants. Immunohistochemical analysis in human placenta demonstrated strong expression of ADAM12 in syncytiotrophoblasts, while little expression of ADAM9 was detected throughout the placenta. Our results suggest ADAM members, at least including ADAM12, are involved in P-LAP shedding in human placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号