首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

2.
AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca(2+) concentration ([Ca(2+)]). The purpose of this study was to determine whether increases in intracellular [Ca(2+)] induced by caffeine act solely via AMPKα(2) and whether AMPKα(2) is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα(2) dominant-negative (DN) transgene mice were perfused during rest (n = 11), treatment with 3 mM caffeine (n = 10), or muscle contraction (n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period (P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol (P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice (P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction (P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation (P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice (P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase I or ERK1/2 (P > 0.05). These data suggest that AMPKα(2) is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.  相似文献   

3.
Calcium-calmodulin/dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK1/2) have each been implicated in the regulation of substrate metabolism during exercise. The purpose of this study was to determine whether CaMKII is involved in the regulation of FA uptake and oxidation and, if it is involved, whether it does so independently of AMPK and ERK1/2. Rat hindquarters were perfused at rest with (n = 16) or without (n = 10) 3 mM caffeine, or during electrical stimulation (n = 14). For each condition, rats were subdivided and treated with 10 muM of either KN92 or KN93, inactive and active CaMKII inhibitors, respectively. Both caffeine treatment and electrical stimulation significantly increased FA uptake and oxidation. KN93 abolished caffeine-induced FA uptake, decreased contraction-induced FA uptake by 33%, and abolished both caffeine- and contraction-induced FA oxidation (P < 0.05). Caffeine had no effect on ERK1/2 phosphorylation (P > 0.05) and increased alpha(2)-AMPK activity by 68% (P < 0.05). Electrical stimulation increased ERK1/2 phosphorylation and alpha(2)-AMPK activity by 51% and 3.4-fold, respectively (P < 0.05). KN93 had no effect on caffeine-induced alpha(2)-AMPK activity, ERK1/2 phosphorylation, or contraction-induced ERK1/2 phosphorylation (P > 0.05). Alternatively, it decreased contraction-induced alpha(2)-AMPK activity by 51% (P < 0.05), suggesting that CaMKII lies upstream of AMPK. These results demonstrate that regulation of contraction-induced FA uptake and oxidation occurs in part via Ca(2+)-independent activation of ERK1/2 as well as Ca(2+)-dependent activation of CaMKII and AMPK.  相似文献   

4.
We examined the effect of insulin on the synthesis and degradation of muscle lipid pools [phospholipid (PL), diacylglycerol (DG), triacylglycerol (TG)] and palmitate oxidation in isolated resting and contracting (20 tetani/min) soleus muscles. Lipid metabolism was monitored using the previously defined pulse-chase procedure. At rest, insulin significantly increased total palmitate uptake into soleus muscle (+49%, P < 0.05), corresponding to enhanced DG (+60%, P < 0.05) and TG (+61%, P < 0.05) esterification, but blunted palmitate oxidation (-38%, P < 0.05) and TG hydrolysis (-34%, P < 0.05). During muscle contraction, when total palmitate uptake was increased, insulin further enhanced uptake (+21%, P < 0.05) and esterification of fatty acids (FA) to PL (+73%, P < 0.05), DG (+19%, P < 0.05), and TG (+161%, P < 0.01). Despite a profound shift in the relative partitioning of FA away from esterification and toward oxidation during contraction, the increase in palmitate oxidation and TG hydrolysis was significantly blunted by insulin [oxidation, -24% (P = 0.05); hydrolysis, -83% (P < 0.01)]. The effects of insulin on FA esterification (stimulation) and oxidation (inhibition) during contraction were reduced in the presence of the phosphatidylinositol 3-kinase inhibitor LY-294002. In summary, the effects of insulin and contraction on palmitate uptake and esterification are additive, while insulin opposes the stimulatory effect of contraction on FA oxidation and TG hydrolysis. Insulin's modulatory effects on muscle FA metabolism during contraction are mediated at least in part through phosphatidylinositol 3-kinase.  相似文献   

5.
Skeletal muscle blood flow increases rapidly with exercise onset, but little is known of where or how the rapid onset of vasodilation (ROV) is governed within the microcirculation. In the retractor muscle of anesthetized hamsters (n = 26), we tested the following: 1) where in the resistance network ROV occurred, 2) how microvascular responses were affected by the duration of contraction, and 3) whether ROV involved muscarinic receptor activation. Single tetanic contractions were evoked using supramaximal field stimulation (100 Hz) to depolarize motor end plates. In response to a 200-ms contraction, red blood cell (rbc) velocity (V(rbc)) in feed arteries (FA; rest: 17.8 +/- 2 mm/s) increased within 1 s; a transient first peak (P1; 50 +/- 7% increase) occurred at approximately 5 s; and a second peak (P2; 50 +/- 15% increase) occurred at approximately 15-20 s. For vasodilation, P1 increased in frequency from proximal FA (2/7) and 1A arterioles (2/7) to distal 2A (4/7) and 3A (7/8) arterioles (P < 0.05). Relative to resting (and maximal, 10 microM sodium nitroprusside) diameters, P1 increased from proximal (FA, 3 +/- 2% from 57 +/- 5 microm) to distal (3A, 27 +/- 6% from 14 +/- 1 microm) vessel branches (P < 0.05). P2 was manifest in all vessels and increased relative to resting diameters from FA (11 +/- 3%) to 3A (36 +/- 6%) branches (P < 0.01). Extending a contraction from 200 to 1,000 ms (tension x time integral from 17 +/- 2 to 73 +/- 4 mN/mm2 x s) increased P1 and P2 for V(rbc) and for diameter (P < 0.05) while reducing the time of onset for P2 (P < 0.05). Superfusion with atropine (10 microM) attenuated P1 of vasodilation (200 ms contraction) from 26 +/- 8% to 6 +/- 2% (n = 7 across branches; P < 0.05) and reduced the diameter x time integral by 46 +/- 13% (P < 0.05) without changing P2. We conclude that ROV in the hamster retractor muscle is initiated in distal arterioles, increases with the duration of muscle contraction, and involves muscarinic receptor activation.  相似文献   

6.
We examined the effects of 8 wk of intense endurance training on free fatty acid (FFA) transporters and metabolism in resting and contracting soleus muscle using pulse-chase procedures. Endurance training increased maximal citrate synthase activity in red muscles (+54 to +91%; P 相似文献   

7.
Leptin acutely increases fatty acid (FA) oxidation and triacylglycerol (TG) hydrolysis and decreases TG esterification in oxidative rodent muscle. However, the effects of chronic leptin administration on FA metabolism in skeletal muscle have not been examined. We hypothesized that chronic leptin treatment would enhance TG hydrolysis as well as the capacity to oxidize FA in soleus (SOL) muscle. Female Sprague-Dawley rats were infused for 2 wk with leptin (LEPT; 0.5 mg x kg(-1) x day(-1)) by use of subcutaneously implanted miniosmotic pumps. Control (AD-S) and pair-fed (PF-S) animals received saline-filled implants. Subsequently, FA metabolism was monitored for 45 min in isolated, resting, and contracting (20 tetani/min) SOL muscles by means of pulse-chase procedures. Food intake (-33 +/- 2%, P < 0.01) and body mass (-12.5 +/- 4%, P = 0.01) were reduced in both LEPT and PF-S animals. Leptin levels were elevated (+418 +/- 7%, P < 0.001) in treated animals but reduced in PF-S animals (-73 +/- 8%, P < 0.05) relative to controls. At rest, TG hydrolysis was increased in leptin-treated rats (1.8 +/- 2.2, AD-S vs. 23.5 +/- 8.1 nmol/g wet wt, LEPT; P < 0.001). In contracting SOL muscles, TG hydrolysis (1.5 +/- 0.6, AD-S vs. 3.6 +/- 1.0 micromol/g wet wt, LEPT; P = 0.02) and palmitate oxidation (18.3 +/- 6.7, AD-S vs. 45.7 +/- 9.9 nmol/g wet wt, LEPT; P < 0.05) were both significantly increased by leptin treatment. Chronic leptin treatment had no effect on TG esterification either at rest or during contraction. Markers of overall (citrate synthase) and FA (hydroxyacyl-CoA dehydrogenase) oxidative capacity were unchanged with leptin treatment. Protein expression of hormone-sensitive lipase (HSL) was also unaltered following leptin treatment. Thus leptin-induced increases in lipolysis are likely due to HSL activation (i.e., phosphorylation). Increased FA oxidation secondary to chronic leptin treatment is not due to an enhanced oxidative capacity and may be a result of enhanced flux into the mitochondrion (i.e., carnitine palmitoyltransferase I regulation) or electron transport uncoupling (i.e., uncoupling protein-3 expression).  相似文献   

8.
To determine the effects of brief food restriction on fatty acid (FA) metabolism, hindlimbs of F344/BN rats fed either ad libitum (AL) or food restricted (FR) to 60% of baseline food intake for 28 days were perfused under hyperglycemic-hyperinsulinemic conditions (20 mM glucose, 1 mM palmitate, 1,000 microU/ml insulin, [3-(3)H]glucose, and [1-(14)C]palmitate). Basal glucose and insulin levels were significantly lower (P < 0.05) in FR vs. AL rats. Palmitate uptake (34.3 +/- 2.7 vs. 24.5 +/- 3.1 nmol/g/min) and oxidation (3.8 +/- 0.2 vs. 2.7 +/- 0.3 nmol.g(-1).min(-1)) were significantly higher (P < 0.05) in FR vs. AL rats, respectively. Glucose uptake was increased in FR rats and was accompanied by significant increases in red and white gastrocnemius glycogen synthesis, indicating an improvement in insulin sensitivity. Although muscle triglyceride (TG) levels were not significantly different between groups, glucose uptake and total preperfusion TG concentration were negatively correlated (r(2) = 0.27, P < 0.05). In conclusion, our results show that under hyperglycemic-hyperinsulinemic conditions, brief FR resulted in an increase in FA oxidative disposal that may contribute to the improvement in insulin sensitivity.  相似文献   

9.
Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O(2) uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased (P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 +/- 0.07; NA, 0.10 +/- 0.01 mM). The decreased plasma FFA during NA was associated with decreased (P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 +/- 2.5, NA: 9.1 +/- 3.0 nmol.min(-1).mg protein(-1)). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 +/- 0.8; NA, 6.3 +/- 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 +/- 0.07; 180 min: 0.17 +/- 0.04 nmol.min(-1).mg protein(-1)). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)alpha1 activity was not affected by exercise or NA, whereas AMPKalpha2 activity was increased (P < 0.05) from rest during exercise in NA and was greater (P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.  相似文献   

10.
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that regulates cellular metabolism and has an essential role in activating glucose transport during hypoxia and ischemia. The mechanisms responsible for AMPK stimulation of glucose transport are uncertain, but may involve interaction with other signaling pathways or direct effects on GLUT vesicular trafficking. One potential downstream mediator of AMPK signaling is the nitric oxide pathway. The aim of this study was to examine the extent to which AMPK mediates glucose transport through activation of the nitric oxide (NO)-signaling pathway in isolated heart muscles. Incubation with 1 mM 5-amino-4-imidazole-1-beta-carboxamide ribofuranoside (AICAR) activated AMPK (P < 0.01) and stimulated glucose uptake (P < 0.05) and translocation of the cardiomyocyte glucose transporter GLUT4 to the cell surface (P < 0.05). AICAR treatment increased phosphorylation of endothelial NO synthase (eNOS) approximately 1.8-fold (P < 0.05). eNOS, but not neuronal NOS, coimmunoprecipitated with both the alpha(2) and alpha(1) AMPK catalytic subunits in heart muscle. NO donors also increased glucose uptake and GLUT4 translocation (P < 0.05). Inhibition of NOS with N(omega)-nitro-l-arginine and N(omega)-methyl-l-arginine reduced AICAR-stimulated glucose uptake by 21 +/- 3% (P < 0.05) and 25 +/- 4% (P < 0.05), respectively. Inhibition of guanylate cyclase with ODQ and LY-83583 reduced AICAR-stimulated glucose uptake by 31 +/- 4% (P < 0.05) and 22 +/- 3% (P < 0.05), respectively, as well as GLUT4 translocation to the cell surface (P < 0.05). Taken together, these results indicate that activation of the NO-guanylate cyclase pathway contributes to, but is not the sole mediator of, AMPK stimulation of glucose uptake and GLUT4 translocation in heart muscle.  相似文献   

11.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

12.
The study investigated the hypothesis that three consecutive days of prolonged cycle exercise would result in a sustained reduction in the Ca(2+)-cycling properties of the vastus lateralis in the absence of changes in the sarcoplasmic (endoplasmic) reticulum Ca(2+)-ATPase (SERCA) protein. Tissue samples were obtained at preexercise (Pre) and postexercise (Post) on day 1 (E1) and day 3 (E3) and during recovery day 1 (R1), day 2 (R2), and day 3 (R3) in 12 active but untrained volunteers (age 19.2 +/- 0.27 yr; mean +/- SE) and analyzed for changes (nmol.mg protein(-1).min(-1)) in maximal Ca(2+)-ATPase activity (V(max)), Ca(2+) uptake and Ca(2+) release (phase 1 and phase 2), and SERCA isoform expression (SERCA1a and SERCA2a). At E1, reductions (P < 0.05) from Pre to Post in V(max) (150 +/- 7 vs. 121 +/- 7), Ca(2+) uptake (7.79 +/- 0.28 vs. 5.71 +/- 0.33), and both phases of Ca(2+) release (phase 1, 20.3 +/- 1.3 vs. 15.2 +/- 1.1; phase 2, 7.70 +/- 0.60 vs. 4.99 +/- 0.48) were found. In contrast to V(max), which recovered at Pre E3 and then remained stable at Post E3 and throughout recovery, Ca(2+) uptake remained depressed (P < 0.05) at E3 Pre and Post and at R1 as did phase 2 of Ca(2+) release. Exercise resulted in an increase (P < 0.05) in SERCA1a (14% at R2) but not SERCA2a. It is concluded that rapidly adapting mechanisms protect V(max) following the onset of regular exercise but not Ca(2+) uptake and Ca(2+) release.  相似文献   

13.
We examined the regulation of free fatty acid (FFA, palmitate) uptake into skeletal muscle cells of nondiabetic and type 2 diabetic subjects. Palmitate uptake included a protein-mediated component that was inhibited by phloretin. The protein-mediated component of uptake in muscle cells from type 2 diabetic subjects (78 +/- 13 nmol. mg protein-1. min-1) was reduced compared with that in nondiabetic muscle (150 +/- 17, P < 0.01). Acute insulin exposure caused a modest (16 +/- 5%, P < 0.025) but significant increase in protein-mediated uptake in nondiabetic muscle. There was no significant insulin effect in diabetic muscle (+19 +/- 19%, P = not significant). Chronic (4 day) treatment with a series of thiazolidinediones, troglitazone (Tgz), rosiglitazone (Rgz), and pioglitazone (Pio) increased FFA uptake. Only the phloretin-inhibitable component was increased by treatment, which normalized this activity in diabetic muscle cells. Under the same conditions, FFA oxidation was also increased by thiazolidinedione treatment. Increases in FFA uptake and oxidation were associated with upregulation of fatty acid translocase (FAT/CD36) expression. FAT/CD36 protein was increased by Tgz (90 +/- 22% over control), Rgz (146 +/- 42%), and Pio (111 +/- 37%, P < 0.05 for all 3) treatment. Tgz treatment had no effect on fatty acid transporter protein-1 and membrane-associated plasmalemmal fatty acid-binding protein mRNA expression. We conclude that FFA uptake into cultured muscle cells is, in part, protein mediated and acutely insulin responsive. The basal activity of FFA uptake is impaired in type 2 diabetes. In addition, chronic thiazolidinedione treatment increased FFA uptake and oxidation into cultured human skeletal muscle cells in concert with upregulation of FAT/CD36 expression. Increased FFA uptake and oxidation may contribute to lower circulating FFA levels and reduced insulin resistance in skeletal muscle of individuals with type 2 diabetes following thiazolidinedione treatment.  相似文献   

14.
The effect of a single bout of exhaustive exercise on muscle lactate transport capacity was studied in rat skeletal muscle sarcolemmal (SL) vesicles. Rats were assigned to a control (C) group (n = 14) or an acutely exercised (E) group (n = 20). Exercise consisted of treadmill running (25 m/min, 10% grade) to exhaustion. SL vesicles purified from C and E rats were sealed because of sensitivity to osmotic forces. The time course of 1 mM lactate uptake in zero-trans conditions showed that the equilibrium level in the E group was significantly lower than in the C group (P < 0.05). The initial rate of 1 mM lactate uptake decreased significantly from 2.44 +/- 0.22 to 1.03 +/- 0.08 nmol. min(-1). mg protein(-1) (P < 0.05) after exercise, whereas that of 50 mM lactate uptake did not differ significantly between the two groups. For 100 mM external lactate concentration ([lactate]), exhaustive exercise increased initial rates of lactate uptake (219.6 +/- 36.3 to 465.4 +/- 80.2 nmol. min(-1). mg protein(-1), P < 0.05). Although saturation kinetics were observed in the C group with a maximal transport velocity of 233 nmol. min(-1). mg protein(-1) and a Michealis-Menten constant of 24.5 mM, saturation properties were not seen after exhaustive exercise in the E group, because initial rates of lactate uptake increased linearly with external [lactate]. We conclude that a single bout of exhaustive exercise significantly modified SL lactate transport activity, resulting in a decrease in 1 mM lactate uptake and was associated with alterations in the saturable properties at [lactate] above 50 mM. These results suggest that changes in sarcolemmal lactate transport activity may alter lactate and proton exchanges after exhaustive exercise.  相似文献   

15.
The purpose of this investigation was to determine whether plasma glucose kinetics and substrate oxidation during exercise are dependent on the phase of the menstrual cycle. Once during the follicular (F) and luteal (L) phases, moderately trained subjects [peak O(2) uptake (V(O(2))) = 48.2 +/- 1.1 ml. min(-1). kg(-1); n = 6] cycled for 25 min at approximately 70% of the V(O(2)) at their respective lactate threshold (70%LT), followed immediately by 25 min at 90%LT. Rates of plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose, and total carbohydrate (CHO) and fat oxidation were determined with indirect calorimetry. At rest and during exercise at 70%LT, there were no differences in glucose R(a) or R(d) between phases. CHO and fat oxidation were not different between phases at 70%LT. At 90%LT, glucose R(a) (28.8 +/- 4.8 vs. 33.7 +/- 4.5 micromol. min(-1). kg(-1); P < 0.05) and R(d) (28.4 +/- 4.8 vs. 34.0 +/- 4.1 micromol. min(-1). kg(-1); P < 0.05) were lower during the L phase. In addition, at 90%LT, CHO oxidation was lower during the L compared with the F phase (82.0 +/- 12.3 vs. 93.8 +/- 9.7 micromol. min(-1) .kg(-1); P < 0.05). Conversely, total fat oxidation was greater during the L phase at 90%LT (7.46 +/- 1.01 vs. 6.05 +/- 0.89 micromol. min(-1). kg(-1); P < 0.05). Plasma lactate concentration was also lower during the L phase at 90%LT concentrations (2.48 +/- 0.41 vs. 3.08 +/- 0.39 mmol/l; P < 0.05). The lower CHO utilization during the L phase was associated with an elevated resting estradiol (P < 0.05). These results indicate that plasma glucose kinetics and CHO oxidation during moderate-intensity exercise are lower during the L compared with the F phase in women. These differences may have been due to differences in circulating estradiol.  相似文献   

16.
In sedentary elderly people, a reduced muscle fatty acid oxidative capacity (MFOC) may explain a decrease in whole body fat oxidation. Eleven sedentary and seven regularly exercising subjects (65.6 +/- 4. 5 yr) were characterized for their aerobic fitness [maximal O(2) uptake (VO(2 max))/kg fat free mass (FFM)] and their habitual daily physical activity level [free-living daily energy expenditure divided by sleeping metabolic rate (DEE(FLC)/SMR)]. MFOC was determined by incubating homogenates of vastus lateralis muscle with [1-(14)C]palmitate. Whole body fat oxidation was measured by indirect calorimetry over 24 h. MFOC was 40.4 +/- 14.7 and 44.3 +/- 16.3 nmol palmitate. g wet tissue(-1). min(-1) in the sedentary and regularly exercising individuals, respectively (P = nonsignificant). MFOC was positively correlated with DEE(FLC)/SMR (r = 0.58, P < 0. 05) but not with VO(2 max)/kg FFM (r = 0.35, P = nonsignificant). MFOC was the main determinant of fat oxidation during all time periods including physical activity. Indeed, MFOC explained 19.7 and 30.5% of the variance in fat oxidation during walking and during the alert period, respectively (P < 0.05). Furthermore, MFOC explained 23.0% of the variance in fat oxidation over 24 h (P < 0.05). It was concluded that, in elderly people, MFOC may be influenced more by overall daily physical activity than by regular exercising. MFOC is a major determinant of whole body fat oxidation during physical activities and, consequently, over 24 h.  相似文献   

17.
Fatty acids flow from adipocytes to nonadipose tissues during fasting and exercise and normally are fully oxidized. To determine if nonadipose tissues can export unoxidized FA when FA influx exceeds oxidation, neonatal cardiomyocytes were cultured in 1 microCi (14)C-palmitate in the presence of etomoxir to block oxidation. The cells took up and stored 25% of the radioactivity as (14)C-triacylglycerol in 12 h, but 4.5% of the label was released in 3 h and comigrated with (14)C-palmitate. Both uptake and release of radioactivity were increased by insulin and reduced by the nonspecific inhibitors of FA transporters phloretin and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Perfused hearts from etomoxir-treated lean rats released 221 +/- 59 nmol/10 min of FA. Hearts from high-fat-fed lean rats released 366 +/- 172 nmol/10 min (P < 0.05). Hearts from obese rats released 744 +/- 260 and 1,578 +/- 630 nmol/10 min at 8 and 12 weeks of age, respectively. Perfusion with insulin increased FA release by 32%. In vitro and ex vivo findings suggest that nonadipose tissues such as myocardium can export FA when the unoxidized lipid content is excessive.  相似文献   

18.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

19.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号