首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Cysteine glutathione peroxidases (CysGPxs) control oxidative stress levels by reducing hydroperoxides at the expense of cysteine thiol (‐SH) oxidation, and the recovery of their peroxidatic activity is generally accomplished by thioredoxin (Trx). Corynebacterium glutamicum mycothiol peroxidase (Mpx) is a member of the CysGPx family. We discovered that its recycling is controlled by both the Trx and the mycothiol (MSH) pathway. After H2O2 reduction, a sulfenic acid (‐SOH) is formed on the peroxidatic cysteine (Cys36), which then reacts with the resolving cysteine (Cys79), forming an intramolecular disulfide (S‐S), which is reduced by Trx. Alternatively, the sulfenic acid reacts with MSH and forms a mixed disulfide. Mycoredoxin 1 (Mrx1) reduces the mixed disulfide, in which Mrx1 acts in combination with MSH and mycothiol disulfide reductase as a biological relevant monothiol reducing system. Remarkably, Trx can also take over the role of Mrx1 and reduce the Mpx‐MSH mixed disulfide using a dithiol mechanism. Furthermore, Mpx is important for cellular survival under H2O2 stress, and its gene expression is clearly induced upon H2O2 challenge. These findings add a new dimension to the redox control and the functioning of CysGPxs in general.  相似文献   

2.
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond.  相似文献   

3.
Methionine sulfoxide reductases A and B (MsrA and MsrB) have been known to be thioredoxin (Trx)-dependent enzymes that catalyze the reduction of methionine sulfoxide in a stereospecific manner. This work reports that glutaredoxin, another major thiol-disulfide oxidoreductase, can serve as a reductant for both MsrA and MsrB. Glutaredoxins efficiently reduced 1-Cys MsrA lacking a resolving Cys, which is not reducible by Trx. Glutaredoxins also reduced 3-Cys MsrA containing two resolving Cys. The glutaredoxin-dependent activity of the 3-Cys MsrA was comparable with the Trx-dependent activity. The kinetic data suggest that 1-Cys MsrA is more efficiently reduced by glutaredoxin than 3-Cys form. Also, glutaredoxins could function as a reductant for 1-Cys MsrB lacking a resolving Cys as previously reported. In contrast to the previous report, 2-Cys MsrB containing a resolving Cys was reducible by the glutaredoxins. Collectively, this study demonstrates that glutaredoxins reduce MsrAs and MsrBs with or without resolving Cys.  相似文献   

4.
Oxidation of methionine into methionine sulfoxide is associated with many pathologies and is described to exert regulatory effects on protein functions. Two classes of methionine sulfoxide reductases, called MsrA and MsrB, have been described to reduce the S and the R isomers of the sulfoxide of methionine sulfoxide back to methionine, respectively. Although MsrAs and MsrBs display quite different x-ray structures, they share a similar, new catalytic mechanism that proceeds via the sulfenic acid chemistry and that includes at least three chemical steps with 1) the formation of a sulfenic acid intermediate and the concomitant release of methionine; 2) the formation of an intra-disulfide bond; and 3) the reduction of the disulfide bond by thioredoxin. In the present study, it is shown that for the Neisseria meningitidis MsrA, 1) the rate-limiting step is associated with the reduction of the Cys-51/Cys-198 disulfide MsrA bond by thioredoxin; 2) the formation of the sulfenic acid intermediate is very efficient, thus suggesting catalytic assistance via amino acids of the active site; 3) the rate-determining step in the formation of the Cys-51/Cys-198 disulfide bond is that leading to the formation of the sulfenic intermediate on Cys-51; and 4) the apparent affinity constant for methionine sulfoxide in the methionine sulfoxide reductase step is 80-fold higher than the Km value determined under steady-state conditions.  相似文献   

5.
The methionine sulfoxide reductases (Msrs) are thioredoxin-dependent oxidoreductases that catalyse the reduction of the sulfoxide function of the oxidized methionine residues. These enzymes have been shown to regulate the life span of a wide range of microbial and animal species and to play the role of physiological virulence determinant of some bacterial pathogens. Two structurally unrelated classes of Msrs exist, MsrA and MsrB, with opposite stereoselectivity towards the R and S isomers of the sulfoxide function, respectively. Both Msrs share a similar three-step chemical mechanism including (1) the formation of a sulfenic acid intermediate on the catalytic Cys with the concomitant release of the product—methionine, (2) the formation of an intramonomeric disulfide bridge between the catalytic and the regenerating Cys and (3) the reduction of the disulfide bridge by thioredoxin or its homologues. In this study, four structures of the MsrA domain of the PilB protein from Neisseria meningitidis, representative of four catalytic intermediates of the MsrA catalytic cycle, were determined by X-ray crystallography: the free reduced form, the Michaelis-like complex, the sulfenic acid intermediate and the disulfide oxidized forms. They reveal a conserved overall structure up to the formation of the sulfenic acid intermediate, while a large conformational switch is observed in the oxidized form. The results are discussed in relation to those proposed from enzymatic, NMR and theoretical chemistry studies. In particular, the substrate specificity and binding, the catalytic scenario of the reductase step and the relevance and role of the large conformational change observed in the oxidized form are discussed.  相似文献   

6.
The methionine sulfoxide reductase (Msr) family is composed of two structurally unrelated classes of monomeric enzymes named MsrA and MsrB, which display opposite stereo-selectivities towards the sulfoxide function. MsrAs and MsrBs, characterized so far, share the same chemical mechanism implying sulfenic acid chemistry. The mechanism includes three steps with (1) formation of a sulfenic acid intermediate with a concomitant release of 1 mol of methionine per mol of enzyme; (2) formation of an intramonomeric disulfide Msr bond followed by; (3) reduction of the oxidized Msr by thioredoxin (Trx). This scheme is in accordance with the kinetic mechanism of both Msrs which is of ping-pong type. For both Msrs, the reductase step is rate-determining in the process leading to the formation of the disulfide bond. The overall rate-limiting step takes place within the thioredoxin-recycling process, likely being associated with oxidized thioredoxin release. The kinetic data support structural recognition between oxidized Msr and reduced thioredoxin. The active sites of both Msrs are adapted for binding protein-bound methionine sulfoxide (MetSO) more efficiently than free MetSO. About 50% of the MsrBs binds a zinc atom, the location of which is in an opposite direction from the active site. Introducing or removing the zinc binding site modulates the catalytic efficiency of MsrB.  相似文献   

7.
Methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. In vivo, Msrs are essential in the protection of cells against oxidative damage to proteins and in the virulence of some bacteria. Two structurally unrelated classes of Msrs, named MsrA and MsrB, exist. MsrB are stereospecific to R epimer on the sulfur of sulfoxide. All MsrB share a common reductase step with the formation of a sulfenic acid intermediate. For the subclass of MsrB whose recycling process passes through the formation of an intradisulfide bond, the recycling reducer is thioredoxin. In the present study, X-ray structures of Neisseria meningitidis MsrB have been determined. The structures have a fold based on two β-sheets, similar to the fold already described for other MsrB, with the recycling Cys63 located in a position favorable for disulfide bond formation with the catalytic Cys117. X-ray structures of Xanthomonas campestris MsrB have also been determined. In the C117S MsrB structure with a bound substrate, the recycling Cys31 is far from Ser117, with Trp65 being essential in the reductase step located in between. This positioning prevents the formation of the Cys31-Cys117 disulfide bond. In the oxidized structure, a drastic conformational reorganization of the two β-sheets due to withdrawal of the Trp65 region from the active site, which remains compatible with an efficient thioredoxin-recycling process, is observed. The results highlight the remarkable structural malleability of the MsrB fold.  相似文献   

8.
Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form.  相似文献   

9.
Mycobacterium tuberculosis (M. tuberculosis), the pathogen responsible for tuberculosis, detoxifies cytotoxic peroxides produced by activated macrophages. M. tuberculosis expresses alkyl hydroxyperoxide reductase E (AhpE), among other peroxiredoxins. So far the system that reduces AhpE was not known. We identified M. tuberculosis mycoredoxin-1 (MtMrx1) acting in combination with mycothiol and mycothiol disulfide reductase (MR), as a biologically relevant reducing system for MtAhpE. MtMrx1, a glutaredoxin-like, mycothiol-dependent oxidoreductase, directly reduces the oxidized form of MtAhpE, through a protein mixed disulfide with the N-terminal cysteine of MtMrx1 and the sulfenic acid derivative of the peroxidatic cysteine of MtAhpE. This disulfide is then reduced by the C-terminal cysteine in MtMrx1. Accordingly, MtAhpE catalyzes the oxidation of wt MtMrx1 by hydrogen peroxide but not of MtMrx1 lacking the C-terminal cysteine, confirming a dithiolic mechanism. Alternatively, oxidized MtAhpE forms a mixed disulfide with mycothiol, which in turn is reduced by MtMrx1 using a monothiolic mechanism. We demonstrated the H2O2-dependent NADPH oxidation catalyzed by MtAhpE in the presence of MR, Mrx1, and mycothiol. Disulfide formation involving mycothiol probably competes with the direct reduction by MtMrx1 in aqueous intracellular media, where mycothiol is present at millimolar concentrations. However, MtAhpE was found to be associated with the membrane fraction, and since mycothiol is hydrophilic, direct reduction by MtMrx1 might be favored. The results reported herein allow the rationalization of peroxide detoxification actions inferred for mycothiol, and more recently, for Mrx1 in cellular systems. We report the first molecular link between a thiol-dependent peroxidase and the mycothiol/Mrx1 pathway in Mycobacteria.  相似文献   

10.
Methionine residues in proteins are susceptible to oxidation, and the resulting methionine sulfoxides can be reduced back to methionines by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). Herein, we have identified two MsrB families that differ by the presence of zinc. Evolutionary analyses suggested that the zinc-containing MsrB proteins are prototype enzymes and that the metal was lost in certain MsrB proteins later in evolution. Zinc-containing Drosophila MsrB was further characterized. The enzyme was found to employ a catalytic Cys(124) thiolate, which directly interacted with methionine sulfoxide, resulting in methionine and a Cys(124) sulfenic acid intermediate. A subsequent reaction of this intermediate with Cys(69) generated an intramolecular disulfide. Dithiothreitol could reduce either the sulfenic acid or the disulfide, but the disulfide was a preferred substrate for thioredoxin, a natural electron donor. Interestingly, the C69S mutant could complement MsrA/MsrB deficiency in yeast, and the corresponding natural form of mouse MsrB was active with thioredoxin. These data indicate that MsrB proteins employ alternative mechanisms for sulfenic acid reduction. Four other conserved cysteines in Drosophila MsrB (Cys(51), Cys(54), Cys(101), and Cys(104)) were found to coordinate structural zinc. Mutation of any one or a combination of these residues resulted in complete loss of metal and catalytic activity, demonstrating an essential role of zinc in Drosophila MsrB. In contrast, two conserved histidines were important for thioredoxin-dependent activity, but were not involved in zinc binding. A Drosophila MsrA gene was also cloned, and the recombinant enzyme was found to be metal-free and specific for methionine S-sulfoxide and to employ a similar sulfenic acid/disulfide mechanism.  相似文献   

11.
Methionine oxidation into methionine sulfoxide is known to be involved in many pathologies and to exert regulatory effects on proteins. This oxidation can be reversed by a ubiquitous monomeric enzyme, the peptide methionine sulfoxide reductase (MsrA), whose activity in vivo requires the thioredoxin-regenerating system. The proposed chemical mechanism of Escherichia coli MsrA involves three Cys residues (positions 51, 198, and 206). A fourth Cys (position 86) is not important for catalysis. In the absence of a reducing system, 2 mol of methionine are formed per mole of enzyme for wild type and Cys-86 --> Ser mutant MsrA, whereas only 1 mol is formed for mutants in which either Cys-198 or Cys-206 is mutated. Reduction of methionine sulfoxide is shown to proceed through the formation of a sulfenic acid intermediate. This intermediate has been characterized by chemical probes and mass spectrometry analyses. Together, the results support a three-step chemical mechanism in vivo: 1) Cys-51 attacks the sulfur atom of the sulfoxide substrate leading, via a rearrangement, to the formation of a sulfenic acid intermediate on Cys-51 and release of 1 mol of methionine/mol of enzyme; 2) the sulfenic acid is then reduced via a double displacement mechanism involving formation of a disulfide bond between Cys-51 and Cys-198, followed by formation of a disulfide bond between Cys-198 and Cys-206, which liberates Cys-51, and 3) the disulfide bond between Cys-198 and Cys-206 is reduced by thioredoxin-dependent recycling system process.  相似文献   

12.
Clostridium oremlandii MsrA (CoMsrA) is a natively selenocysteine-containing methionine-S-sulfoxide reductase and classified into a 1-Cys type MsrA. CoMsrA exists as a monomer in solution. Herein, we report evidence that CoMsrA can undergo homodimerization during catalysis. The monomeric CoMsrA dimerizes in the presence of its substrate methionine sulfoxide via an intermolecular disulfide bond between catalytic Cys16 residues. The dimeric CoMsrA is resolved by the reductant glutaredoxin, suggesting the relevance of dimerization in catalysis. The dimerization reaction occurs in a concentration- and time-dependent manner. In addition, the occurrence of homodimer formation in the native selenoprotein CoMsrA is confirmed. We also determine the crystal structure of the dimeric CoMsrA, having the dimer interface around the two catalytic Cys16 residues. A central cone-shaped hole is present in the surface model of dimeric structure, and the two Cys16 residues constitute the base of the hole. Collectively, our biochemical and structural analyses suggest a novel dimerization-mediated mechanism for CoMsrA catalysis that is additionally involved in CoMsrA regeneration by glutaredoxin.  相似文献   

13.
Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen.  相似文献   

14.
The methionine S-sulfoxide reductase MsrA catalyzes the reduction of methionine sulfoxide, a ubiquitous reaction depending on the thioredoxin system. To investigate interactions between MsrA and thioredoxin (Trx), we determined the crystal structures of yeast MsrA/Mxr1 in their reduced, oxidized, and Trx2-complexed forms, at 2.03, 1.90, and 2.70 Å, respectively. Comparative structure analysis revealed significant conformational changes of the three loops, which form a plastic “cushion” to harbor the electron donor Trx2. The flexible C-terminal loop enabled Mxr1 to access the methionine sulfoxide on various protein substrates. Moreover, the plasticity of the Trx binding site on Mxr1 provides structural insights into the recognition of diverse substrates by a universal catalytic motif of Trx.  相似文献   

15.
We have identified and characterized a 14-kDa human thioredoxin (Trx)-related protein designated TRP14. This cytosolic protein was expressed in all tissues and cell types examined, generally in smaller amounts than Trx1. Although TRP14 contains five cysteines, only the two Cys residues in its WCPDC motif were exposed and redox sensitive. Unlike Trx1, which was an equally good substrate for both Trx reductase 1 (TrxR1) and TrxR2, oxidized TRP14 was reduced by TrxR1 but not by TrxR2. Biochemical characterization of TRP14 suggested that, like Trx1, TRP14 is a disulfide reductase; its active site cysteine is sufficiently nucleophilic with the pK(a) value of 6.1; and its redox potential (-257 mV) is similar to those of other cellular thiol reductants. However, although TRP14 reduced small disulfide-containing peptides, it did not reduce the disulfides of known Trx1 substrates, ribonucleotide reductase, peroxiredoxin, and methionine sulfoxide reductase. These results suggest that TRP14 and Trx1 might act on distinct substrate proteins.  相似文献   

16.
Kim HY  Fomenko DE  Yoon YE  Gladyshev VN 《Biochemistry》2006,45(46):13697-13704
Methionine sulfoxide reductases are key enzymes that repair oxidatively damaged proteins. Two distinct stereospecific enzyme families are responsible for this function: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). In the present study, we identified multiple selenoprotein MsrA sequences in organisms from bacteria to animals. We characterized the selenocysteine (Sec)-containing Chlamydomonas MsrA and found that this protein exhibited 10-50-fold higher activity than either its cysteine (Cys) mutant form or the natural mouse Cys-containing MsrA, making this selenoenzyme the most efficient MsrA known. We also generated a selenoprotein form of mouse MsrA and found that the presence of Sec increased the activity of this enzyme when a resolving Cys was mutated in the protein. These data suggest that the presence of Sec improves the reduction of methionine sulfoxide by MsrAs. However, the oxidized selenoprotein could not always be efficiently reduced to regenerate the active enzyme. Overall, this study demonstrates that sporadically evolved Sec-containing forms of methionine sulfoxide reductases reflect catalytic advantages provided by Sec in these and likely other thiol-dependent oxidoreductases.  相似文献   

17.
The monomeric peptide methionine sulfoxide reductase (MsrA) catalyzes the irreversible thioredoxin-dependent reduction of methionine sulfoxide. The crystal structure of MsrAs from Escherichia coli and Bos taurus can be described as a central core of about 140 amino acids that contains the active site. The core is wrapped by two long N- and C-terminal extended chains. The catalytic mechanism of the E. coli enzyme has been recently postulated to take place through formation of a sulfenic acid intermediate, followed by reduction of the intermediate via intrathiol-disulfide exchanges and thioredoxin oxidation. In the present work, truncated MsrAs at the N- or C-terminal end or at both were produced as folded entities. All forms are able to reduce methionine sulfoxide in the presence of dithiothreitol. However, only the N-terminal truncated form, which possesses the two cysteines located at the C-terminus, reduces the sulfenic acid intermediate in a thioredoxin-dependent manner. The wild type displays a ping-pong mechanism with either thioredoxin or dithiothreitol as reductant. Kinetic saturation is only observed with thioredoxin with a low K(M) value of 10 microM. Thus, thioredoxin is likely the reductant in vivo. Truncations do not significantly modify the kinetic properties, except for the double truncated form, which displays a 17-fold decrease in k(cat)/K(MetSO). Alternative mechanisms for sulfenic acid reduction are also presented based on analysis of available MsrA sequences.  相似文献   

18.
PILB has been described as being involved in the virulence of bacteria of Neisseria genus. The PILB protein is composed of three subdomains. In the present study, the central subdomain (PILB-MsrA), the C terminus subdomain (PILB-MsrB), and the fused subdomain (PILB-MsrA/MsrB) of N. meningitidis were produced as folded entities. The central subdomain shows a methionine sulfoxide reductase A (MsrA) activity, whereas PILB-MsrB displays a methionine sulfoxide reductase B (MsrB) activity. The catalytic mechanism of PILB-MsrB can be divided into two steps: 1) an attack of the Cys-494 on the sulfur atom of the sulfoxide substrate, leading to formation of a sulfenic acid intermediate and release of 1 mol of methionine/mol of enzyme and 2) a regeneration of Cys-494 via formation of an intradisulfide bond with Cys-439 followed by reduction with thioredoxin. The study also shows that 1) MsrA and MsrB display opposite stereoselectivities toward the sulfoxide function; 2) the active sites of both Msrs, particularly MsrB, are rather adapted for binding protein-bound MetSO more efficiently than free MetSO; 3) the carbon Calpha is not a determining factor for efficient binding to both Msrs; and 4) the presence of the sulfoxide function is a prerequisite for binding to Msrs. The fact that the two Msrs exhibit opposite stereoselectivities argues for a structure of the active site of MsrBs different from that of MsrAs. This is further supported by the absence of sequence homology between the two Msrs in particular around the cysteine that is involved in formation of the sulfenic acid derivative. The fact that the catalytic mechanism takes place through formation of a sulfenic acid intermediate for both Msrs supports the idea that sulfenic acid chemistry is a general feature in the reduction of sulfoxides by thiols.  相似文献   

19.
The mammalian cytosolic/nuclear thioredoxin system, comprising thioredoxin (Trx), selenoenzyme thioredoxin reductase (TrxR), and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. The active site of reduced Trx comprises Cys(32)-Gly-Pro-Cys(35) thiols that catalyze target disulfide reduction, generating a disulfide. Human Trx1 has also three structural Cys residues in positions 62, 69, and 73 that upon diamide oxidation induce a second Cys(62)-Cys(69) disulfide as well as dimers and multimers. We have discovered that after incubation with H(2)O(2) only monomeric two-disulfide molecules are generated, and they are inactive but able to regain full activity in an autocatalytic process in the presence of NADPH and TrxR. There are conflicting results regarding the effects of S-nitrosylation on Trx antioxidant functions and which residues are involved. We found that S-nitrosoglutathione-mediated S-nitrosylation at physiological pH is critically dependent on the redox state of Trx. Starting from fully reduced human Trx, both Cys(69) and Cys(73) were nitrosylated, and the active site formed a disulfide; the nitrosylated Trx was not a substrate for TrxR but regained activity after a lag phase consistent with autoactivation. Treatment of a two-disulfide form of Trx1 with S-nitrosoglutathione resulted in nitrosylation of Cys(73), which can act as a trans-nitrosylating agent as observed by others to control caspase 3 activity (Mitchell, D. A., and Marletta, M. A. (2005) Nat. Chem. Biol. 1, 154-158). The reversible inhibition of human Trx1 activity by H(2)O(2) and NO donors is suggested to act in cell signaling via temporal control of reduction for the transmission of oxidative and/or nitrosative signals in thiol redox control.  相似文献   

20.
Oxidation of Met residues in proteins leads to the formation of methionine sulfoxides (MetSO). Methionine sulfoxide reductases (Msr) are ubiquitous enzymes, which catalyze the reduction of the sulfoxide function of the oxidized methionine residues. In vivo, the role of Msrs is described as essential in protecting cells against oxidative damages and to play a role in infection of cells by pathogenic bacteria. There exist two structurally-unrelated classes of Msrs, called MsrA and MsrB, with opposite stereoselectivity towards the S and R isomers of the sulfoxide function, respectively. Both Msrs present a similar three-step catalytic mechanism. The first step, called the reductase step, leads to the formation of a sulfenic acid on the catalytic Cys with the concomitant release of Met. In recent years, significant efforts have been made to characterize structural and molecular factors involved in the catalysis, in particular of the reductase step, and in structural specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号