首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methionine Sulfoxide Reductase B Displays a High Level of Flexibility
Authors:Fanomezana M Ranaivoson  Brice Kauffmann  Sandrine Boschi-Muller  Frédérique Favier
Institution:1 CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France
2 AREMS, Equipe Enzymologie Moléculaire et Structurale, UMR 7214 CNRS-UHP, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France
3 Institut Européen de Chimie et de Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
Abstract:Methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. In vivo, Msrs are essential in the protection of cells against oxidative damage to proteins and in the virulence of some bacteria. Two structurally unrelated classes of Msrs, named MsrA and MsrB, exist. MsrB are stereospecific to R epimer on the sulfur of sulfoxide. All MsrB share a common reductase step with the formation of a sulfenic acid intermediate. For the subclass of MsrB whose recycling process passes through the formation of an intradisulfide bond, the recycling reducer is thioredoxin. In the present study, X-ray structures of Neisseria meningitidis MsrB have been determined. The structures have a fold based on two β-sheets, similar to the fold already described for other MsrB, with the recycling Cys63 located in a position favorable for disulfide bond formation with the catalytic Cys117. X-ray structures of Xanthomonas campestris MsrB have also been determined. In the C117S MsrB structure with a bound substrate, the recycling Cys31 is far from Ser117, with Trp65 being essential in the reductase step located in between. This positioning prevents the formation of the Cys31-Cys117 disulfide bond. In the oxidized structure, a drastic conformational reorganization of the two β-sheets due to withdrawal of the Trp65 region from the active site, which remains compatible with an efficient thioredoxin-recycling process, is observed. The results highlight the remarkable structural malleability of the MsrB fold.
Keywords:Msr  methionine sulfoxide reductase  Met-O  methionine sulfoxide  Trx  thioredoxin  PDB  Protein Data Bank  SeMet  selenomethionine  PEG  polyethylene glycol  MRNT  Ministè  re de la Recherche et des Nouvelles Technologies
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号