首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   4篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   11篇
  2013年   11篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  1995年   1篇
  1994年   2篇
  1982年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
1.
Abstract Fifteen Streptomyces strains capable of decolorizing humic acids in presence of glucose were isolated from soil samples using the dilute suspension technique and spread on agar plates. Six strains, displaying a significant and stable activity, were selected for further characterization. Some features of these isolates (carbon source utilization, enzyme production, antibiotic resistance) were compared with those of the reference strain Streptomyces viridosporus ATCC 39115. Degradation properties studied in batch cultures at pH 7.0 showed that the catabolic activity on humic acids was generally stimulated by incubation with 100% oxygen and was cell surface-associated. Peroxidase activity from cell-free extracts was analysed by using the oxidation of N,N,N′,N′-tetramethyl-phenylene-diamine. PAGE analysis revealed the existence of two major types of peroxidases (molecular mass: about 39.2 and 61.6 kDa), dividing the strains into two groups. The role of cell surface-associated peroxidase activity in the breakdown of humic acids is discussed.  相似文献   
2.
Reactive oxidative species (ROS) toxicity remains an undisputed cause and link between Alzheimer’s disease (AD) and Type-2 Diabetes Mellitus (T2DM). Patients with both AD and T2DM have damaged, oxidized DNA, RNA, protein and lipid products that can be used as possible disease progression markers. Although the oxidative stress has been anticipated as a main cause in promoting both AD and T2DM, multiple pathways could be involved in ROS production. The focus of this review is to summarize the mechanisms involved in ROS production and their possible association with AD and T2DM pathogenesis and progression. We have also highlighted the role of current treatments that can be linked with reduced oxidative stress and damage in AD and T2DM.  相似文献   
3.
The aim of this study was to investigate macrophage reverse cholesterol transport (RCT) in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA) supplemented high fat diet (HFD). Three groups of hamsters (n = 6/group) were studied for 20 weeks: 1) control diet: Control, 2) HFD group: HF and 3) HFD group supplemented with ω3PUFA (EPA and DHA): HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages.Compared to Control, HF presented significant (p<0.05) increase in body weight, plasma TG (p<0.01) and cholesterol (p<0.001) with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001).Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001) and cholesterol (p<0.001) related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05) compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05) compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05) compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05) and in ABCG1 and CYP7A1 compared to HF group (p<0.05). A higher plasma efflux capacity was also measured in HFω3 using 3H- cholesterol labeled Fu5AH cells.In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT.  相似文献   
4.
5.
Molecular Biology Reports - Metabolic syndrome (MetS) results from the interaction between environmental and genetic factors. Several previous studies considered the role of selenium in developing...  相似文献   
6.
Biology Bulletin - Over 18 strains of lactic acid bacteria “LAB” isolated from different traditionally fermented products mainly sourdough and fermented vegetables, have been...  相似文献   
7.
Aldosterone regulates sodium homeostasis by activating the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Hyperaldosteronism leads todeleterious effects on the kidney, blood vessels, and heart. Although steroidal antagonists such as spironolactone and eplerenone are clinically useful for the treatment of cardiovascular diseases, they are associated with several side effects. Finerenone, a novel nonsteroidal MR antagonist, is presently being evaluated in two clinical phase IIb trials. Here, we characterized the molecular mechanisms of action of finerenone and spironolactone at several key steps of the MR signaling pathway. Molecular modeling and mutagenesis approaches allowed identification of Ser-810 and Ala-773 as key residues for the high MR selectivity of finerenone. Moreover, we showed that, in contrast to spironolactone, which activates the S810L mutant MR responsible for a severe form of early onset hypertension, finerenone displays strict antagonistic properties. Aldosterone-dependent phosphorylation and degradation of MR are inhibited by both finerenone and spironolactone. However, automated quantification of MR subcellular distribution demonstrated that finerenone delays aldosterone-induced nuclear accumulation of MR more efficiently than spironolactone. Finally, chromatin immunoprecipitation assays revealed that, as opposed to spironolactone, finerenone inhibits MR, steroid receptor coactivator-1, and RNA polymerase II binding at the regulatory sequence of the SCNN1A gene and also remarkably reduces basal MR and steroid receptor coactivator-1 recruitment, unraveling a specific and unrecognized inactivating mechanism on MR signaling. Overall, our data demonstrate that the highly potent and selective MR antagonist finerenone specifically impairs several critical steps of the MR signaling pathway and therefore represents a promising new generation MR antagonist.  相似文献   
8.
9.
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.Among the different amino acids, the sulfur containing amino acids like cysteine are particularly susceptible to oxidation by reactive oxygen species (ROS)1 (1, 2). Recent studies suggest that the sulfenome, the initial oxidation products of cysteine residues, functions as an intermediate state of redox signaling (3 5). Thus, identifying the sulfenome under oxidative stress is a way to detect potential redox sensors (6, 7).This central role of the sulfenome in redox signaling provoked chemical biologists to develop strategies for sensitive detection and identification of sulfenylated proteins. The in situ trapping of the sulfenome is challenging because of two major factors: (1) the highly reactive, transient nature of sulfenic acids, which might be over-oxidized in excess of ROS, unless immediately protected by disulfide formation (7); (2) the intracellular compartmentalization of the redox state that might be disrupted during extraction procedures, resulting in artificial non-native protein oxidations (8, 9). Having a sulfur oxidation state of zero, sulfenic acids can react as both electrophile and nucleophile, however, direct detection methods are based on the electrophilic character of sulfenic acid (10). In 1974, Allison and coworkers reported a condensation reaction between the electrophilic sulfenic acid and the nucleophile dimedone (5,5-dimethyl-1,3-cyclohexanedione), producing a corresponding thioether derivative (11). This chemistry is highly selective and, since then, has been exploited to detect dimedone modified sulfenic acids using mass spectrometry (12). However, dimedone has limited applications for cellular sulfenome identification because of the lack of a functional group to enrich the dimedone tagged sulfenic acids. Later, dimedone-biotin/fluorophores conjugates have been developed, which allowed sensitive detection and enrichment of sulfenic acid modified proteins (13 15). This approach, however, was not always compatible with in vivo cellular sulfenome analysis, because the biotin/fluorophores-conjugated dimedone is membrane impermeable (9) and endogenous biotinylated proteins might appear as false positives.More recently, the Carroll lab has developed DYn-2, a sulfenic acid specific chemical probe. This chemical probe consists of two functional units: a dimedone scaffold for sulfenic acid recognition and an alkyne chemical handle for enrichment of labeled proteins (9). Once the sulfenic acids are tagged with the DYn-2 probe, they can be biotinylated through click chemistry (16). The click reaction used here is a copper (I)-catalyzed azide-alkyne cycloaddition reaction (17), also known as azide-alkyne Huisgen cycloaddition (16). With this chemistry, a complex is formed between the alkyne functionalized DYn-2 and the azide functionalized biotin. This biotin functional group facilitates downstream detection, enrichment, and mass spectrometry based identification (Fig. 1). In an evaluation experiment, DYn-2 was found to efficiently detect H2O2-dependent sulfenic acid modifications in recombinant glutathione peroxidase 3 (Gpx3) of budding yeast (18). Moreover, it was reported that DYn-2 is membrane permeable, non-toxic, and a non-influencer of the intracellular redox balance (17, 18). Therefore, DYn-2 has been suggested as a global sulfenome reader in living cells (17, 18), and has been applied to investigate epidermal growth factor (EGF) mediated protein sulfenylation in a human epidermoid carcinoma A431 cell line and to identify intracellular protein targets of H2O2 during cell signaling (17).Open in a separate windowFig. 1.Schematic views of the molecular mechanism of the DYn-2 probe and the strategy to identify DYn-2 trapped sulfenylated proteins. A, DYn-2 specifically detects sulfenic acid modifications, but no other thiol modifications. B, Biotinylation of the DYn-2 tagged proteins by click reaction. C, Once DYn-2 tagged proteins are biotinylated, a streptavidin-HRP (Strep-HRP) blot visualizes sulfenylation, or alternatively, after enrichment on avidin beads, proteins are identified by mass spectrometry analysis.Here, we selected the DYn-2 probe to identify the sulfenome in plant cells under oxidative stress. Through a combination of biochemical, immunoblot and mass spectrometry techniques, and TAIR10 database and SUBA3-software predictions, we can claim that DYn-2 is able to detect sulfenic acids on proteins located in different subcellular compartments of plant cells. We identified 226 sulfenylated proteins in response to an H2O2 treatment of Arabidopsis cell suspensions, of which 123 proteins are new candidates for cysteine oxidative post-translational modification (PTM) events.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号