首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fecal microbiota transplantation (FMT) of human fecal samples into germ-free (GF) mice is useful for establishing causal relationships between the gut microbiota and human phenotypes. However, due to the intrinsic differences between human and mouse intestines and the different diets of the two organisms, it may not be possible to replicate human phenotypes in mice through FMT; similarly, treatments that are effective in mouse models may not be effective in humans. In this study, we aimed to identify human gut microbes that undergo significant and consistent changes (i.e., in relative abundances) after transplantation into GF mice in multiple experimental settings. We collected 16S rDNA-seq data from four published studies and analyzed the gut microbiota profiles from 1713 human–mouse pairs. Strikingly, on average, we found that only 47% of the human gut microbes could be re-established in mice at the species level, among which more than 1/3 underwent significant changes (referred to as “variable taxa”). Most of the human gut microbes that underwent significant changes were consistent across multiple human–mouse pairs and experimental settings. Consequently, about 1/3 of human samples changed their enterotypes, i.e., significant changes in their leading species after FMT. Mice fed with a controlled diet showed a lower enterotype change rate (23.5%) than those fed with a noncontrolled diet (49.0%), suggesting a possible solution for rescue. Most of the variable taxa have been reported to be implicated in human diseases, with some recognized as the causative species. Our results highlight the challenges of using a mouse model to replicate human gut microbiota-associated phenotypes, provide useful information for researchers using mice in gut microbiota studies, and call for additional validations after FMT. An online database named FMT-DB is publicly available at http://fmt2mice.humangut.info/#/.  相似文献   

2.
【目的】以海南地区征集的29名健康青年志愿者为研究对象,分析该地区青年人肠道菌群多样性,并探究益生菌Lactobacillus paracasei subsp. paracasei Zhang (LCZ)对其肠道菌群的影响。【方法】29名健康青年志愿者每日补充2 g益生菌LCZ (0.5×10~(10)CFU/g),为期14 d。采集摄入益生菌LCZ第0、14、28天的志愿者粪便样品,采用Pac Bio SMRT测序技术基于16S rRNA基因全长测序分析志愿者粪便微生物组成和结构,评估益生菌LCZ对其肠道菌群的影响。【结果】在门水平上,Firmicutes (54.46%)和Bacteroidetes (33.79%)在志愿者粪便微生物中含量最高;在属水平上,Bacteroides (23.13%)的相对含量最高;在种水平上,优势菌种为Faecalibacterium prausnitzii (9.72%)、Eubacterium rectale (7.00%)和Prevotella copri (6.07%)等。摄入益生菌LCZ 14 d后,肠道中的优势菌属变化不显著,低丰度菌属如Oscillospira和Parabacteroides等显著增加,Aeromonas和Fusicatenibacter等显著减少(P0.05)。此外根据志愿者粪便中Lactobacillus含量的变化情况,将所有志愿者分为两组。其中一组志愿者在摄入LCZ后粪便中Lactobacillus菌属相对含量显著增加,同时该组志愿者肠道中其他菌种如Butyricicoccus pullicaecorum、Lactococcus raffinolactis和Parabacteroides distasoni亦显著增加;而另一组志愿者,Lactobacillus及上述菌种均未发生显著变化。【结论】连续2周摄入益生菌LCZ对志愿者肠道菌群中优势菌属的相对丰度影响不显著,但对低丰度菌属的相对丰度影响显著。  相似文献   

3.
方圆  李玭  武微  熊倩  律娜  朱宝利  张玉梅 《微生物学报》2021,61(11):3642-3652
[目的] 比较持续母乳喂养条件下不同分娩方式的34周龄婴儿肠道菌群差异,探讨分娩方式对较大婴儿肠道菌群发育的影响。[方法] 在北京地区招募健康足月分娩母乳喂养婴儿,在34周仍然参与随访的持续母乳喂养婴儿共21例,其中剖宫产婴儿16例、阴道分娩婴儿5例,进行肠道菌群的16S rRNA检测。[结果] 两组共21个粪便样本中,共注释到6个门,分别为:疣微菌门、变形菌门、梭杆菌门、厚壁菌门、放线菌门和拟杆菌门;两组共21个样本中共有57个OTU注释到属水平,其中,26个属水平OTU被注释到厚壁菌门,18个属水平OTU被注释到变形菌门,6个属水平OTU被注释到放线菌门,5个属水平OTU被注释到拟杆菌门,梭杆菌门、疣微菌门各有1个属水平OTU被注释。其中变形菌门在阴道分娩组(44.17%)肠道菌群中的含量高于剖宫产组(16.10%);而放线菌门在阴道分娩婴儿(0.00%)肠道菌群中的含量低于剖宫产婴儿(0.09%)。阴道分娩组与剖宫产组相比,共有7个菌属的丰度发生了显著降低(P<0.05),分别为副杆菌属、葡萄球菌属、嗜血杆菌属、乳杆菌属、肠球菌属、双歧杆菌属及一注释到科水平的毛螺旋菌科OTU。[结论] 分娩方式对持续母乳喂养的婴儿肠道菌群结构存在影响,且这种影响在出生后34周仍然存在。  相似文献   

4.
Aims: To develop species‐specific monitoring techniques for rapid detection of Bacteroides and Parabacteroides inhabiting the mouse intestine by fluorescence in situ hybridization. Methods and Results: The specificity of oligonucleotide probes was evaluated by fluorescence whole‐cell hybridization. Oligonucleotide probes specific for each species hybridized only with the target bacteria. Using these probes, caecal Bacteroides–Parabacteroides microbiota of conventional mice and specific pathogen‐free (SPF) mice from three different breeders were analysed. It was shown that Bacteroides acidifaciens Group‐1, Group‐2 and Group‐3 were dominant in conventional mice and SPF mice from two out of three breeders. Bacteroides vulgatus and Parabacteroides distasonis were detected in one of these two SPF breeding colonies in addition to Bact. acidifaciens. SPF mice of the remaining breeder harboured characteristic Bacteroides–Parabacteroides microbiota, consisting of Bacteroides sp. ASF519 and Bacteroides caccae. Conclusions: Bacteroides acidifaciens is the dominant and most typical species in the mouse Bacteroides–Parabacteroides microbiota. The Group‐3 was identified as a novel group and revealed to occupy a major niche together with Bact. acidifaciens Group‐1 and Group‐2. Significance and Impact of the Study: The species‐specific probe set developed in this study was the efficient tool for rapid detection of target bacterial groups inhabiting the mouse intestine. The results of this study provide important new information on the mouse Bacteroides–Parabacteroides community.  相似文献   

5.
Tart cherries have been reported to exert potential health benefits attributed to their specific and abundant polyphenol content. However, there is a need to study the impact and fate of tart cherries polyphenols in the gut microbiota. Here, tart cherries, pure polyphenols (and apricots) were submitted to in vitro bacterial fermentation assays and assessed through 16S rRNA gene sequence sequencing and metabolomics. A short-term (5 days, 8 oz. daily) human dietary intervention study was also conducted for microbiota analyses.Tart cherry concentrate juices were found to contain expected abundances of anthocyanins (cyanidin-glycosylrutinoside) and flavonoids (quercetin-rutinoside) and high amounts of chlorogenic and neochlorogenic acids. Targeted metabolomics confirmed that gut microbes were able to degrade those polyphenols mainly to 4-hydroxyphenylpropionic acids and to lower amounts of epicatechin and 4-hydroxybenzoic acids. Tart cherries were found to induce a large increase of Bacteroides in vitro, likely due to the input of polysaccharides, but prebiotic effect was also suggested by Bifidobacterium increase from chlorogenic acid. In the human study, two distinct and inverse responses to tart cherry consumption were associated with initial levels of Bacteroides. High-Bacteroides individuals responded with a decrease in Bacteroides and Bifidobacterium, and an increase of Lachnospiraceae, Ruminococcus and Collinsella. Low-Bacteroides individuals responded with an increase in Bacteroides or Prevotella and Bifidobacterium, and a decrease of Lachnospiraceae, Ruminococcus and Collinsella. These data confirm that gut microbiota metabolism, in particular the potential existence of different metabotypes, needs to be considered in studies attempting to link tart cherries consumption and health.  相似文献   

6.
Many colobine species—including the endangered Guizhou snub‐nosed monkey (Rhinopithecus brelichi) are difficult to maintain in captivity and frequently exhibit gastrointestinal (GI) problems. GI problems are commonly linked to alterations in the gut microbiota, which lead us to examine the gut microbial communities of wild and captive R. brelichi. We used high‐throughput sequencing of the 16S rRNA gene to compare the gut microbiota of wild (N = 7) and captive (N = 8) R. brelichi. Wild monkeys exhibited increased gut microbial diversity based on the Chao1 but not Shannon diversity metric and greater relative abundances of bacteria in the Lachnospiraceae and Ruminococcaceae families. Microbes in these families digest complex plant materials and produce butyrate, a short chain fatty acid critical to colonocyte health. Captive monkeys had greater relative abundances of Prevotella and Bacteroides species, which degrade simple sugars and carbohydrates, like those present in fruits and cornmeal, two staples of the captive R. brelichi diet. Captive monkeys also had a greater abundance of Akkermansia species, a microbe that can thrive in the face of host malnutrition. Taken together, these findings suggest that poor health in captive R. brelichi may be linked to diet and an altered gut microbiota.  相似文献   

7.
Cognitive decline is a common symptom at advanced stage of type 1 diabetes (T1D), but its potential pathogenesis remains unclear. In this study, therefore, we investigated changes in the gut microbiome and metabolome in serum and hippocampus between advanced-stage T1D (AST1D) rats with cognitive decline and age-matched controls (AMC), and explored the possible mechanism of the gut-microbiota-metabolite axis in T1D-induced cognitive dysfunction. The results demonstrated that AST1D rats possessed peculiar metabolic phenotypes in serum and hippocampus relative to AMC rats, as characterized by decreases in tricarboxylic acid (TCA) cycle and amino acid and choline metabolism as well as disturbances in glutamate/GABA-glutamine cycle and astrocyte-neuron metabolism. We also found that AST1D rats had higher relative abundances of Prevotella_9, Bacteroides and Lachnospiraceae_NK4A136_group as well as lower relative abundances of Clostridium_sensu_stricto_1, Romboutsia and Turicibacter than AMC rats. Microbiota-host metabolic correlation analysis suggests that metabolic alterations in serum and hippocampus may be modulated by the gut microbiota, especially Clostridium_sensu_stricto_1, Romboutsia and Turicibacter. Therefore, our study implies that the modification of host metabolism by targeting the gut microbiota may be a novel avenue for prevention and treatment of diabetic encephalopathy in the future.  相似文献   

8.
The antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA-ARB) in situ at the single-cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA-ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA-ARB, Raman-activated cell sorting (RACS) was used to sort MA-ARB from human gut microbiota, and mini-metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA-ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single-cell level.  相似文献   

9.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

10.
Pan  Zhiyuan  Hu  Yichen  Huang  Zongyu  Han  Ni  Li  Yan  Zhuang  Xiaomei  Yin  Jiye  Peng  Hui  Gao  Quansheng  Zhang  Wenpeng  Huang  Yong  Cui  Yujun  Bi  Yujing  Xu  Zhenjiang Zech  Yang  Ruifu 《中国科学:生命科学英文版》2022,65(10):2093-2113

The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.

  相似文献   

11.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   

12.
High altitude is an important driving force in animal evolution. However, the effect of altitude on gut microbial communities in reptiles has not been examined in detail. Here, we investigated the intestinal microbiota of three populations of the lizard Phrynocephalus vlangalii living at different altitudes using 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla. Bacteroides, Odoribacter, and Parabacteroides were the most abundant genera. Significant differences in the intestinal microbiota composition were found among the three populations from different altitudes. The proportions of Verrucomicrobia and Akkermansia decreased, whereas Bacteroides increased significantly with altitude. Greater abundance of Bacteroides at higher altitude led to the fractional increase in the phylum Bacteroides relative to other phyla. Hypoxia may be the main factor that caused intestinal microbiota variation in P. vlangalii along the altitude gradient. Overall, our study suggested that the community composition and structure of intestinal microbiota of the lizard P. vlangalii varied along altitudes, and such differences likely play a certain role in highland adaptation. Our findings warrant a further study that would determine whether ambient and body temperatures play a key role in the modulation of intestinal microbiota in reptiles.  相似文献   

13.
【目的】银杏提取物在防治心血管系统和神经系统疾病方面发挥重要功能。鉴于肠道菌群已被认定为一个新兴的药物作用靶标,研究银杏双黄酮和银杏内酯与人体肠道菌群之间的相互作用具有非常重要的意义,这将为进一步理解银杏提取物的功能和作用机制奠定基础。【方法】本研究使用人体肠道菌群体外批量发酵、细菌总量测定、细菌16S rDNA高通量测序、气相色谱和液相色谱检测等方法,对银杏双黄酮和银杏内酯B单独或复合在体外与人体肠道菌群的相互作用进行研究。【结果】银杏双黄酮和银杏内酯B单独添加对人体肠道菌群总量、肠道菌群结构组成和短链脂肪酸产量没有显著影响。但有意思的是,复合添加银杏双黄酮和银杏内酯B后,Coriobacteriaceae科和Cupriavidus属细菌的比例显著升高,Gemella菌细菌比例显著降低。功能基因预测分析发现,编码K00076、K12143、K07716和K00220的基因在复合添加银杏双黄酮和银杏内酯B后显著富集。K00076和K00220是氧化还原酶,催化CH-OH供体基团的电子转移,可能参与银杏双黄酮和银杏内酯B的代谢和修饰。HPLC检测发现,人体肠道菌群体外对银杏双黄酮和银杏内脂B的降解修饰率分别为70%和35%左右。【结论】体外复合添加银杏双黄酮和银杏内酯B可显著改变肠道某些细菌的丰度。同时,体外研究表明肠道菌群具有代谢修饰银杏双黄酮和银杏内酯B的功能。  相似文献   

14.
The gastrointestinal microbiome is recognized as a critical component in host immune function, physiology, and behavior. Early life experiences that alter diet and social contact also influence these outcomes. Despite the growing number of studies in this area, no studies to date have examined the contribution of early life experiences on the gut microbiome in infants across development. Such studies are important for understanding the biological and environmental factors that contribute to optimal gut microbial colonization and subsequent health. We studied infant rhesus monkeys (Macaca mulatta) across the first 6 months of life that were pseudo‐randomly assigned to one of two different rearing conditions at birth: mother‐peer‐reared (MPR), in which infants were reared in social groups with many other adults and peers and nursed on their mothers, or nursery‐reared (NR), in which infants were reared by human caregivers, fed formula, and given daily social contact with peers. We analyzed the microbiome from rectal swabs (total N = 97; MPR = 43, NR = 54) taken on the day of birth and at postnatal Days 14, 30, 90, and 180 using 16S rRNA gene sequencing. Bacterial composition differences were evident as early as 14 days, with MPR infants exhibiting a lower abundance of Bifidobacterium and a higher abundance of Bacteroides than NR infants. The most marked differences were observed at 90 days, when Bifidobacterium, Lactobacillus, Streptococcus, Bacteroides, Clostridium, and Prevotella differed across rearing groups. By Day 180, no differences in the relative abundances of the bacteria of interest were observed. These novel findings in developing primate neonates indicate that the early social environment as well as diet influence gut microbiota composition very early in life. These results also lay the groundwork for mechanistic studies examining the effects of early experiences on gut microbiota across development with the ultimate goal of understanding the clinical significance of developmental changes.  相似文献   

15.
Bacteroides is a bacterial genus that is known to closely interact with the host. The potential role of this genus is associated with its ecological status and distribution in the intestine. However, the current 16S V3–V4 region sequencing method can only detect the abundance of this genus, revealing a need for a novel sequencing method that can elucidate the composition of Bacteroides in the human gut microbiota. In this study, a core gene, rpsD, was selected as a template for the design of a Bacteroides-specific primer set. We used this primer set to develop a novel assay based on the Illumina MiSeq sequencing platform that enabled an accurate assessment of the Bacteroides compositions in complex samples. Known amounts of genomic DNA from 10 Bacteroides species were mixed with a complex sample and used to evaluate the performance and detection limit of our assay. The results were highly consistent with those of direct sequencing with a low Bacteroides DNA detection threshold (0.01 ng), supporting the reliability of our assay. In addition, the assay could detect all the known Bacteroides species within the faecal sample. In summary, we provide a sensitive and specific approach to determining the Bacteroides species in complex samples.  相似文献   

16.
Radiation enteritis (RE) is the most common complication of radiotherapy for pelvic irradiation receivers. Herein we investigated the alterations in gut microbial profiles and their association with enteritis in patients undergoing pelvic radiotherapy. Faecal samples were collected from 18 cervical cancer patients during radiotherapy. Microbiota profiles were characterized based on 16S rRNA sequencing using the Illumina HiSeq platform. Epithelial inflammatory response was evaluated using bacterial‐epithelial co‐cultures. Dysbiosis was observed among patients with RE, which was characterized by significantly reduced α‐diversity but increased β‐diversity, relative higher abundance of Proteobacteria and Gammaproteobacteria and lower abundance of Bacteroides. Coprococcus was clearly enriched prior to radiotherapy in patients who later developed RE. Metastat analysis further revealed unique grade‐related microbial features, such as more abundant Virgibacillus and Alcanivorax in patients with mild enteritis. Additionally, using bacterial‐epithelial co‐cultures, RE patient‐derived microbiota induced epithelial inflammation and barrier dysfunction, enhanced TNF‐α and IL‐1β expression compared with control microbiota. Taken together, we define the overall picture of gut microbiota in patients with RE. Our results suggest that dysbiosis of gut microbiota may contribute to development and progression of RE. Gut microbiota can offer a set of biomarkers for prediction, disease activity evaluation and treatment selection in RE.  相似文献   

17.
Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.  相似文献   

18.
The development of gut microbiota during ontogeny is emerging as an important process influencing physiology, immunity and fitness in vertebrates. However, knowledge of how bacteria colonize the juvenile gut, how this is influenced by changes in the diversity of gut bacteria and to what extent this influences host fitness, particularly in nonmodel organisms, is lacking. Here we used 16S rRNA gene sequencing to describe the successional development of the faecal microbiome in ostriches (Struthio camelus, n = 66, repeatedly sampled) over the first 3 months of life and its relationship to growth. We found a gradual increase in microbial diversity with age that involved multiple colonization and extinction events and a major taxonomic shift in bacteria that coincided with the cessation of yolk absorption. Comparisons with the microbiota of adults (n = 5) revealed that the chicks became more similar in their microbial diversity and composition to adults as they aged. There was a five‐fold difference in juvenile growth during development, and growth during the first week of age was strongly positively correlated with the abundance of the genus Bacteroides and negatively correlated with Akkermansia. After the first week, the abundances of six phylogenetically diverse families (Peptococcaceae, S24‐7, Verrucomicrobiae, Anaeroplasmataceae, Streptococcaceae, Methanobacteriaceae) were associated with subsequent reductions in chick growth in an age‐specific and transient manner. These results have broad implications for our understanding of the development of gut microbiota and its associations with animal growth.  相似文献   

19.
Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer’s patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer’s patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.  相似文献   

20.
Avian leukosis virus (ALV) poses a major threat to poultry. The chicken gut microbiota plays critical roles in host performance, health and immunity. However, the effect of viral infection on the microbiota of Chinese local chickens is not well understood. In this study, we performed high-throughput 16S rRNA gene sequencing and evaluated the gut microbiota profiles using faeces from ALV subgroup J (ALV-J)-infected and healthy Huiyang bearded chickens (Chinese local chickens). At the phylum level, ALV-J infection mainly increased the abundance of Bacteroidetes and Proteobacteria and decreased that of Firmicutes. An analysis at the order, family and genus levels showed that the abundance of Lactobacillales, Lactobacillaceae and Lactobacillus was the highest in normal chicken faeces, accounting for 89·07%, 86·47% and 86·46%, respectively, of phylotypes. Moreover, samples from ALV-J-infected chickens were enriched with Bacteroidales, Clostridiales, Bacteroidaceae, Ruminococcaceae, Lachnospiraceae and Bacteroides. Our findings highlight that ALV-J infection alters the gut microbiota and disrupts the host–microbial homeostasis in chickens, which may be involved in the pathogenesis of ALV-J infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号