首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
It is well known that hyperglycaemia due to diabetes mellitus leads to oxidative stress in the central nervous system. Oxidative stress plays important role in the pathogenesis of neurodegenerative changes. In the present study we investigated the possible neuroprotective effect of etomidate against streptozotocin-induced (STZ-induced) hyperglycaemia in the rat brain and spinal cord. A total of 40 rats were used in this study. Rats were divided into four groups: sham-control, diabetic, diabetic-etomidate treated and vehicle for etomidate treatment group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Three days after streptoztocin injection, etomidate (2 mg/kg) was injected intraperitoneally for etomidate group and lipid emulsion (10%) for vehicle group was injected with corresponding amount intraperitoneally every day for 6 weeks. Six weeks after streptozotocin injection, seven rats from each group were killed and brain, brain stem and cervical spinal cord were removed. The hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for the biochemical analysis (the level of malondialdehyde [MDA], total nitrite, reduced glutathione [GSH], and xanthine oxidase [XO] activity). STZ-induced diabetes resulted in significantly elevation of MDA, XO and nitrite levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the rats (P < 0.05) while etomidate treatment provided significantly lower values (P < 0.05). This study demonstrated that etomidate have neuroprotective effect on the neuronal tissue against the diabetic oxidative damage.  相似文献   

2.
To characterize the biological functions of rat brain (B-type) natriuretic peptide (BNP), which has been shown to be present mainly in the heart and only faintly in the spinal cord, the concentration and molecular forms of BNP in plasma and spinal cord were determined. The concentration of immunoreactive (ir-) BNP was 2.00 fmol/ml in normal rat and 13.29 fmol/ml in morphine-treated rat, being respectively about 1/20 and 1/80 those of ir-atrial (A-type) natriuretic peptide (ANP). In morphine-treated rats, ir-BNP was shown to circulate mainly as BNP-45, which is identical to a major storage form found in cardiac atrium. In the spinal cord, BNP was also shown to be present as BNP-45, but its concentration was only 0.057 pmol/g, being about 1/60 that of spinal cord ANP. These results confirm that BNP mainly functions as a circulating hormone in the molecular form of BNP-45. Morphine stimulates secretion of ANP and BNP but by different ratios, suggesting different regulation systems for storage and secretion of ANP and BNP.  相似文献   

3.
To elucidate the role of iron in the pathomechanisms of autoimmune CNS disorders, we estimated the tissue concentrations of Fe2+ in the brain, spinal cord, and liver in the chronic relapsing form of experimental autoimmune encephalomyelitis (EAE). The disease was induced in Dark Agouti (DA) strain of rats, by subcutaneous injection of bovine brain homogenate in complete Freund's adjuvant (CFA). Control rats consisted of unsensitized rats and of rats treated with CFA or saline. The data obtained by clinical assessment and by inductively coupled plasma spectrometry have shown that the attacks of disease (on the 12th and 22nd post-immunization day) were followed by high accumulation of iron in the liver. Additionally, during the second attack of disease, the decreased concentration of Fe2+ was found in cervical spinal cord. The data point to regulatory effects of iron and hepatic trace elements regulating mechanisms in the pathogenesis of EAE.  相似文献   

4.
Embryonic neural stem cell (ENSC) transplantation is used experimentally for the improvement of spinal cord repair following spinal cord injury (SCI). However, the effects of such intervention on oxidative stress and cell death remain unknown. We used in vivo Comet assay in the acute and chronic SCI groups compared with the SCI+ENSC transplantation groups of experimental rats in order to evaluate DNA damage in the spinal cord. Chronic SCI resulted in the generation of oxidative DNA damage in the spinal cord brain and kidneys, as indicated by high Comet assay parameters, including the percentage of DNA in the tail (T%, or TD), tail moment (TM), and tail length (TL). The DNA damage levels significantly decreased after ENSC transplantation in the spinal cords of acute and chronic SCI groups within the lesion site and rostrally and caudally to the injury, and in the brains and kidneys of the chronic SCI group. Thus, ENSC transplantation is found to be an effective tool for limitation of DNA damage following spinal cord injury.  相似文献   

5.
Glutamate is an excitatory neurotransmitter involved in neuronal plasticity and neurotoxicity. Chronic stress produces several physiological changes on the spinal cord, many of them presenting sex-specific differences, which probably involve glutamatergic system alterations. The aim of the present study was to verify possible effects of exposure to chronic restraint stress and 17β-estradiol replacement on [3H]-glutamate release and uptake in spinal cord synaptosomes of ovariectomized (OVX) rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided in controls and chronically stressed. Restraint stress or estradiol had no effect on [3H]-glutamate release. The chronic restraint stress promoted a decrease and 17β-estradiol induced an increase on [3H]-glutamate uptake, but the uptake observed in the restraint stress +17β-estradiol group was similar to control. Furthermore, 17β-estradiol treatment caused a significant increase in the immunocontent of the three glutamate transporters present in spinal cord. Restraint stress had no effect on the expression of these transporters, but prevented the 17β-estradiol effect. We suggest that changes in the glutamatergic system are likely to take part in the mechanisms involved in spinal cord plasticity following repeated stress exposure, and that 17β-estradiol levels may affect chronic stress effects in this structure.  相似文献   

6.
Spinal cord polysomes were prepared from 15-day-old rats, 3-month-old rats, and adult triethyl tin-fed and control rats by a procedure adapted from that of Zomzely -Neurath et al. (1973) for brain polysomes. The state of aggregation and the activity in a cell-free system supplemented with a hepatic enzyme fraction were studied with these preparations. The properties of the amino acid-incorporating system in spinal cord polysomes were similar to those of brain systems with respect to rapid incorporation in the first 30 min of incubation, dependence on polysomes and supplementary enzymes, sensitivity to emetine and high Mg2+, and relative insensitivity to cycloheximide. Polysomes from 15-day-old rats were more highly aggregated than those from 3-month-old rats, but incorporation of radioactive amino acids was not different in the preparations from the two age groups with respect to the requirement for the supplementary enzyme fraction or the kinetics. Spinal cord polysomes prepared from rats with chronic triethyl tin-induced edema and demyelination were slightly more aggregated than those from the controls. Average increases of 30% in amino acid incorporating activity were observed in spinal cord polysomes from triethyl tin-fed rats compared to those of controls. Similar increases have been shown previously in fractions from the spinal cord slice, especially in the myelin fraction (Smith , 1973). Spinal cord polysomes from rats in two stages of development and in different experimentally-caused physiological states behaved differently within the limits of our in vitro system.  相似文献   

7.
Both experimental and clinical studies suggests that oxidative stress plays an important role in the pathogenesis of diabetes mellitus type 1 and type 2. Hyperglycaemia leads to free radical generation and causes neural degeneration. In the present study we investigated the possible neuroprotective effect of mexiletine against streptozotocin-induced hyperglycaemia in the rat brain and spinal cord.30 adult male Wistar rats were divided into three groups: control, diabetic, and diabetic-mexiletine treated group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Mexiletine (50 mg/kg) was injected intraperitoneally every day for six weeks. After 6 weeks the brain, brain stem and cervical spinal cord of the rats were removed and the hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical analysis (the level of Malondialdehide [MDA], Nitric Oxide [NO], Reduced Glutathione [GSH], and Xanthine Oxidase [XO] activity). MDA, XO and NO levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group increased significantly, when compared with control and mexiletine groups (P < 0.05). GSH levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group decreased significantly when compared with control and mexiletine groups (P < 0.05).This study demonstrates that mexiletine protects the neuronal tissue against the diabetic oxidative damage.  相似文献   

8.
Yang CC  Shih YH  Ko MH  Hsu SY  Cheng H  Fu YS 《PloS one》2008,3(10):e3336

Background

Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton''s jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury.

Methodology/Principal Findings

We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5×105 HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair.

Conclusions/Significance

Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats.  相似文献   

9.
Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.  相似文献   

10.
Peng  Yawen  Guo  Genhua  Shu  Bin  Liu  Daiqiang  Su  Peng  Zhang  Xuming  Gao  Feng 《Neurochemical research》2017,42(11):3254-3267

CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly.

  相似文献   

11.
Summary In conscious Pekin ducks, carotid and sciatic blood flows, respiratory rate, core and skin temperatures were measured during selective thermal stimulations of the spinal cord and rostral brain stem in thermoneutral (20 °C) and warm (32 °C) ambient conditions.At thermoneutral ambient temperature selective heating of the spinal cord by 2–3 °C (to 43–44 °C) increased the carotid blood flow by 138% and the sciatic blood flow by 46%. Increase in blood flows was correlated with increased breathing rate and beak and web skin temperatures.Selective cooling of the spinal cord at warm ambient temperatures and panting reduced the blood flow in both arteries and decreased the breathing rate.Heating or cooling of the brain stem showed generally very weak but otherwise similar responses as thermal stimulation of the spinal cord. In one duck out of six there was a marked effect on regional blood flow during brain stimulation.The results show that thermal stimulation of the spinal cord exerts a marked influence on regional blood flow important in thermoregulation, whereas the lower brain stem shows only a weak thermosensitivity, and stimulation caused only small cardiovascular changes of no major consequence in thermoregulation.  相似文献   

12.
Cholinergic receptors in upper motor neurons of brain stem control locomotion and coordination. Present study unravels cholinergic alterations in brain stem during spinal cord injury to understand signalling pathway changes which may be associated with spinal cord injury mediated motor deficits. We evaluated cholinergic function in brain stem by studying the expression of choline acetyl transferase and acetylcholine esterase. We quantified metabotropic muscarinic cholinergic receptors by receptor assays for total muscarinic, muscarinic M1 and M3 receptor subunits, gene expression studies using Real Time PCR and confocal imaging using FITC tagged secondary antibodies. The gene expression of ionotropic nicotinic cholinergic receptors and confocal imaging were also studied. The results from our study showed metabolic disturbance in cholinergic pathway as choline acetyl transferase is down regulated and acetylcholine esterase is up regulated in spinal cord injury group. The significant decrease in muscarinic receptors showed by decreased receptor number along with down regulated gene expression and confocal imaging accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic acetylcholine receptors and confocal imaging. The motor coordination was analysed by Grid walk test which showed an increased foot slips in spinal cord injured rats. The significant reduction in brain stem cholinergic function might have intensified the motor dysfunction and locomotor disabilities.  相似文献   

13.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

14.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

15.
PROTEOLYTIC ENZYMES AND EXPERIMENTAL DEMYELINATION IN THE RAT AND MONKEY   总被引:5,自引:2,他引:3  
Abstract— Visible lesions from monkeys with acute experimental allergic encephalomyelitis (EAE) induced by injection of purified myelin basic protein were assayed for acid proteinase, for a neutral proteinase at pH 6·5, and one lesion was measured for cathepsin A. Acid proteinase was increased to 152–176 per cent of levels in normal-appearing brain areas, neutral proteinase increased to 220–258 per cent, and the one lesion assayed for cathepsin A was 840 per cent of control. These enzymes were measured in the brain stem of Lewis rats with acute EAE as a result of basic protein injection and compared to Freund's adjuvant-injected controls. Acid proteinase was increased significantly to an average level of 128 per cent of control, the increase in neutral proteinase was not significant, and cathepsin A levels were 258 per cent of control, a highly significant increase. The rise in cathepsin A levels was not seen until the onset of paralytic symptoms. The brain stem of Wistar rats treated with whole spinal cord which show EAE in a milder form than the Lewis rat did not contain significantly higher enzyme levels than the control. The increases in acid proteinase and cathepsin A in brain stems were compared to levels of these enzymes in lymph nodes of EAE, Freund's adjuvant-injected controls and uninjected controls. The level of acid proteinase of lymph nodes/g protein did not change appreciably in the course of EAE development in the Lewis and Wistar rats and was about 3–4 times the activity in the brain stem. The cathepsin A in the inguinal lymph nodes of Wistar and Lewis rats injected with whole spinal cord in Freund's adjuvant increases to a level 2× that of the lymph nodes of the uninjected control. The cathepsin A levels in these activated lymph nodes was 6–8 × that of the control brain stem. The lymph nodes of Lewis and Wistar rats injected with Freund's adjuvant alone showed the same increase in cathepsin A as those from rats injected with spinal cord. The brain stem of rats undergoing severe demyelination as a result of chronic administration of triethyl tin did not show the enzyme increases. These results are compatible with the theory that proteolytic enzyme increases in EAE (and probably multiple sclerosis) are due to the invasion of mononuclear cells, some of which are probably lymphocytes. Whether or not these enzymes participate in the actual dissolution of myelin is unknown.  相似文献   

16.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases.These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson''s disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS).This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo.Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.  相似文献   

17.
This study characterized the differentiation of neural stem/precursor cells (NSPCs) isolated from different levels of the spinal cord (cervical vs lumbar cord) and different regions along the neuraxis (brain vs cervical spinal cord) of adult male Wistar enhanced green fluorescent protein rats. The differentiation of cervical spinal cord NSPCs was further examined after variation of time in culture, addition of growth factors, and changes in cell matrix and serum concentration. Brain NSPCs did not differ from cervical cord NSPCs in the percentages of neurons, astrocytes, or oligodendrocytes but produced 26.9% less radial glia. Lumbar cord NSPCs produced 30.8% fewer radial glia and 6.9% more neurons compared with cervical cord NSPCs. Spinal cord NSPC differentiation was amenable to manipulation by growth factors and changes in in vitro conditions. This is the first study to directly compare the effect of growth factors, culturing time, serum concentration, and cell matrix on rat spinal cord NSPCs isolated, propagated, and differentiated under identical conditions. (J Histochem Cytochem 57:405–423, 2009)  相似文献   

18.
Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK . Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core , and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs.  相似文献   

19.
摘要 目的:探讨人脐带间充质干细胞(Human umbilical cord mesenchymal stem cells,hUC-MSCs)对脊柱骨折大鼠愈合及神经功能的影响。方法:脊柱骨折Sprague-Dawley雄性大鼠模型30只随机分为hUC-MSCs组与对照组,各15只。hUC-MSCs组大鼠在骨折部位移植0.5 mL的hUC-MSCs(细胞浓度为2×106/mL),对照组大鼠移植同体积的生理盐水,记录大鼠愈合及神经功能变化情况。结果:两组造模后15 min、30 min、90 min的平均动脉压都波动明显,不过组间对比差异无统计学意义(P>0.05)。与造模后2 w对比,两组造模后4 w的神经功能BBB评分均升高,且hUC-MSCs组造模后2 w、4 w的神经功能BBB评分都高于对照组(P<0.05)。hUC-MSCs组造模后8 w的骨体积分数高于对照组(P<0.05)。hUC-MSCs组骨折部位附近有少量骨痂生长,骨折线逐渐消失;骨痂已明显包裹骨折部位。hUC-MSCs组造模后8 w的脊髓细胞凋亡指数低于对照组(P<0.05)。结论:hUC-MSCs在脊柱骨折大鼠的应用能促进骨折愈合与改善神经功能,也可以抑制脊髓细胞凋亡,从而发挥很好的治疗作用。  相似文献   

20.

Background

Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the lumbar spinal cord of SOD1G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1G93A animals.

Methods/Principal Findings

Presymptomatic SOD1G93A rats (60–65 days old) received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal) was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50–65%) loss of large caliber descending motor axons.

Conclusions/Significance

These data demonstrate that in order to achieve a more clinically-adequate treatment, cell-replacement/gene therapy strategies will likely require both spinal and supraspinal targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号