首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
We have tested the hypothesis which stipulates that only early-replicating genes are capable of expression. Within one cell type of Physarum - the plasmodium - we defined the temporal order of replication of 10 genes which were known to be variably expressed in 4 different developmental stages of the Physarum life cycle. Southern analysis of density-labeled, bromodesoxyuridine-substituted DNA reveals that 4 genes presumably inactive within the plasmodium, were not restricted to any temporal compartment of S-phase: 1 is replicated in early S-phase, 2 in mid S-phase and 1 in late S-phase. On the other hand, 4 out of 6 active genes analysed are duplicated early, with the first 30% of the genome. Surprisingly, the two others active genes are replicated late in S-phase. By gene-dosage analysis, based on quantitation of hybridization signals from early and late replicating genes throughout S-phase, we could pinpoint the replication of one of these two genes at a stage where 80-85% of the genome has duplicated. Our results demonstrate that late replication during S-phase does not preclude gene activity.  相似文献   

4.
5.
6.
7.
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown. Here, we show that Rif1 (Rap1-interacting-factor-1), originally identified as a telomere-binding factor in yeast, is a critical determinant of the replication timing programme in human cells. Depletion of Rif1 results in specific loss of mid-S replication foci profiles, stimulation of initiation events in early-S-phase and changes in long-range replication timing domain structures. Analyses of replication timing show replication of sequences normally replicating early is delayed, whereas that normally replicating late is advanced, suggesting that replication timing regulation is abrogated in the absence of Rif1. Rif1 tightly binds to nuclear-insoluble structures at late-M-to-early-G1 and regulates chromatin-loop sizes. Furthermore, Rif1 colocalizes specifically with the mid-S replication foci. Thus, Rif1 establishes the mid-S replication domains that are restrained from being activated at early-S-phase. Our results indicate that Rif1 plays crucial roles in determining the replication timing domain structures in human cells through regulating higher-order chromatin architecture.  相似文献   

8.
9.
10.
11.
J J Wille  Jr 《Nucleic acids research》1977,4(9):3143-3154
Synchronous plasmodia of Physarum polycephalum were pulse-labeled with 3H-thymidine in early or late portions of the S-phase, and the binding capacity of the replicated DNA for isochronous S-phase plasmodial proteins assessed by nitrocellulose filter binding assay. Replication units replicating during the first one-third of the S-phase preferentially bind cytosol proteins present in plasmodia engaged in early S DNA replication, while late S replicating DNA exhibits a corresponding preferential binding of plasmodial proteins present only in late S plasmodia. Temporally-characteristic nascent replication units were isolated by Hydroxylapatite column chromatography and were found to contain binding sites for isochronous proteins.  相似文献   

12.
13.
14.
Regional variations of DNA GC content are observed in species as different as S.cerevisiae and humans. In vertebrates and yeast they are correlated with replication timing; late replicating chromosomal regions are more AT-rich than early replicating regions. We show here that gene composition in E.coli also has long range variations which are similarly correlated with replication timing. We suggest that the enrichment in AT base pairs in late replicating DNA reflects differences in DNA repair modes. These sequences, which are in single copy for a greater part of the cell cycle than origin-linked genes, have less opportunity to engage in repair via homologous recombination and therefore may resort more often to translesion synthesis involving the misincorporation of adenine opposite modified nucleotides.  相似文献   

15.
16.
17.
18.
19.
20.
Since the G + C content of a gene is correlated to that of the isochore in which it resides, and early replicating isochores are thought to be relatively G + C rich, early replicating genes should also be rich in G + C. This hypothesis is tested on a sample of 44 mammalian genes for which replication time data and sequence information are available. Early replicating genes do not appear to be more G + C rich than late replicating genes, instead there is considerable variation in the G + C content of genes replicated during both halves of S phase. These results show that both G + C rich and poor fractions of the genome are replicated early and late in the cell cycle, and suggest that isochores are not maintained by the replication of DNA sequences in compositionally biased free nucleotide pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号