首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
Autophagy, a eukaryotic cellular activity leading to the degradation of cellular components, serves as a defense mechanism against facultative intracellular bacteria as well as a growth niche for the obligate intracellular bacterium Coxiella burnetii . We here demonstrate that the obligate intracellular bacterial pathogen Chlamydia trachomatis lymphogranuloma venereum strongly induced autophagy in the middle of the chlamydial developmental cycle (24 h after infection), a time point with maximal level of chlamydial replication, but not during the early stages with low overall chlamydial metabolism (before 8 h). No autophagy induction was evident in cells exposed to heat- and UV-inactivated elementary bodies (EBs, the infectious form of Chlamydia ) or to inocula from which EBs had been removed before inoculation. Blocking chlamydial development with chloramphenicol also prevented autophagy induction in cells infected with infectious EBs. It appears that autophagy is activated primarily in response to the metabolic stress consequent to chlamydial replication. However, autophagy-defective ATG5−/− cells supported chlamydial development as efficiently as autophagy-proficient ATG5+/+ cells.  相似文献   

3.
The chlamydial EUO gene encodes a histone H1-specific protease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Chlamydia trachomatis is an obligate intracellular pathogen, long recognized as an agent of blinding eye disease and more recently as a common sexually transmitted infection. Recently, two eukaryotic histone H1-like proteins, designated Hc1 and Hc2, have been identified in Chlamydia. Expression of Hc1 in recombinant Escherichia coli produces chromatin condensation similar to nucleoid condensation observed late in the parasite's own life cycle. In contrast, chromatin decondensation, observed during the early life cycle, accompanies down-regulation and nondetection of Hc1 and Hc2 among internalized organisms. We reasoned that the early upstream open reading frame (EUO) gene product might play a role in Hc1 degradation and nucleoid decondensation since it is expressed very early in the chlamydial life cycle. To explore this possibility, we fused the EUO coding region between amino acids 4 and 177 from C. trachomatis serovar Lz with glutathione S-transferase (GST) and examined the effects of fusion protein on Hc1 in vitro. The purified fusion protein was able to digest Hc1 completely within 1 h at 37 degrees C. However, GST alone exhibited no Hc1-specific proteolytic activity. The chlamydial EUO-GST gene product also cleaves very-lysine-rich calf thymus histone H1 and chicken erythrocyte histone H5 but displays no measurable activity towards core histones H2A, H2B, H3, and H4 or chlamydial RNA polymerase alpha-subunit. This proteolytic activity appears sensitive to the serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF) and aspartic protease inhibitor pepstatin but resistant to high temperature and other broad-spectrum protease inhibitors. The proteolytic activity specified by the EUO-GST fusion product selectively digested the C-terminal portion of chlamydial Hc1, the domain involved in DNA binding, while leaving the N terminus intact. At a molar equivalent ratio of 1:1 between Hc1 and DNA, the EUO gene product cleaves Hc1 complexed to DNA and this cleavage appears sufficient to initiate dissociation of DNA-Hc1 complexes. However, at a higher molar equivalent ratio of Hc1/DNA (10:1), there is partial protection conferred upon Hc1 to an extent that prevents dissociation of DNA-Hc1 complexes.  相似文献   

4.
5.
6.
7.
8.
Chlamydiaceae are obligate intracellular bacteria that cause endemic trachoma, sexually transmitted diseases and respiratory infections. The course of the diseases is determined by local inflammatory immune responses and the propensity of the pathogen to replicate within infected host cells. Both features require energy which is inseparably coupled to oxygen availability in the microenvironment. Hypoxia-inducible factor-1 (HIF-1) regulates crucial genes involved in the adaptation to low oxygen concentrations, cell metabolism and the innate immune response. Here we report that Chlamydia pneumoniae directly interferes with host cell HIF-1alpha regulation in a biphasic manner. In hypoxia, C. pneumoniae infection had an additive effect on HIF-1alpha stabilization resulting in enhanced glucose uptake during the early phase of infection. During the late phase of intracellular chlamydial replication, host cell adaptation to hypoxia was actively silenced by pathogen-induced HIF-1alpha degradation. HIF-1alpha was targeted by the chlamydial protease-like activity factor, which was secreted into the cytoplasm of infected cells. Direct interference with HIF-1alpha stabilization was essential for efficient C. pneumoniae replication in hypoxia and highlights a novel strategy of adaptive pathogen-host interaction in chlamydial diseases.  相似文献   

9.
The infectious cycle of phiCPG1, a bacteriophage that infects the obligate intracellular pathogen, Chlamydia psittaci strain Guinea Pig Inclusion Conjunctivitis, was observed using transmission electron microscopy of phage-hyperinfected, Chlamydia-infected HeLa cells. Phage attachment to extracellular, metabolically dormant, infectious elementary bodies and cointernalisation are demonstrated. Following entry, phage infection takes place as soon as elementary bodies differentiate into metabolically active reticulate bodies. Phage-infected bacteria follow an altered developmental path whereby cell division is inhibited, producing abnormally large reticulate bodies, termed maxi-reticulate bodies, which do not mature to elementary bodies. These forms eventually lyse late in the chlamydial developmental cycle, releasing abundant phage progeny in the inclusion and, upon lysis of the inclusion membrane, into the cytosol of the host cell. Structural integrity of the hyperinfected HeLa cell is markedly compromised at late stages. Released phage particles attach avidly to the outer leaflet of the outer membranes of lysed and unlysed Chlamydiae at different stages of development, suggesting the presence of specific phage receptors in the outer membrane uniformly during the chlamydial developmental cycle. A mechanism for phage infection is proposed, whereby phage gains access to replicating chlamydiae by attaching to the infectious elementary body, subsequently subverting the chlamydial developmental cycle to its own replicative needs. The implications of phage infection in the context of chlamydial infection and disease are discussed.  相似文献   

10.
11.
12.
13.
Chlamydia are bacterial pathogens of humans and animals causing the important human diseases trachoma, sexually transmitted chlamydial disease and pneumonia. Of the human chlamydial diseases, sexually transmitted disease caused by Chlamydia trachomatis is a major public health concern. Chlamydia trachomatis replicates intracellularly and is characterised by a complex developmental cycle. Chlamydia is susceptible to humoral and cell-mediated immunity. Here we investigate the Th1 cell-mediated immune response against Chlamydia-infected cells as the response changes over the chlamydial developmental cycle. We suggest a form for the immune response over one developmental cycle by modelling the change in the number of intracellular chlamydial particles and assume peptides are presented in proportion to the number of replicating forms of chlamydial particles. We predict, perhaps non-intuitively, that persistent Chlamydia should be induced and forced not to return to the lytic cycle. We also suggest that extending the length of the time of the lytic cycle will effectively decrease the required efficacy of the Th1 response to eliminate the pathogen. We produce plots of active disease progression, control and clearance for varying levels of Th1 effectiveness.  相似文献   

14.
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.  相似文献   

15.
We have tested the hypothesis which stipulates that only early-replicating genes are capable of expression. Within one cell type of Physarum - the plasmodium - we defined the temporal order of replication of 10 genes which were known to be variably expressed in 4 different developmental stages of the Physarum life cycle. Southern analysis of density-labeled, bromodesoxyuridine-substituted DNA reveals that 4 genes presumably inactive within the plasmodium, were not restricted to any temporal compartment of S-phase: 1 is replicated in early S-phase, 2 in mid S-phase and 1 in late S-phase. On the other hand, 4 out of 6 active genes analysed are duplicated early, with the first 30% of the genome. Surprisingly, the two others active genes are replicated late in S-phase. By gene-dosage analysis, based on quantitation of hybridization signals from early and late replicating genes throughout S-phase, we could pinpoint the replication of one of these two genes at a stage where 80-85% of the genome has duplicated. Our results demonstrate that late replication during S-phase does not preclude gene activity.  相似文献   

16.
Chlamydia trachomatis is an obligate intracellular bacterium that infects chiefly urogenital and ocular epithelial cells. In some infected women the microorganism migrates to the upper reproductive tract resulting in a chronic, but asymptomatic, infection. The immune response to this infection, production of interferon-γ and pro-inflammatory cytokines, results in interruption of chlamydial intracellular replication. However, the Chlamydia remains viable and enters into a persistent state. In this form, most chlamydial genes are inactive. An exception is the gene coding for the 60 kDa heat shock protein (hsp60), which is synthesized in increased amounts and is released into the extracellular milieu. The chronic release of chlamydial hsp60 induces a local pro-inflammatory immune response in fallopian tube epithelia and results in scar formation and tubal occlusion. In addition, long-term exposure of the maternal immune system to the chlamydial hsp60 eventually results in the release of tolerance and generation of an immune response that recognizes regions of the chlamydial hsp60 that are also present in the human hsp60. Production of cross-reacting antibodies and cell-mediated immunity to the human hsp60 is detrimental to subsequent pregnancy outcome and may also possibly increase susceptibility to atherosclerosis, autoimmune disorders, or malignancies.  相似文献   

17.
18.
19.
Since the G + C content of a gene is correlated to that of the isochore in which it resides, and early replicating isochores are thought to be relatively G + C rich, early replicating genes should also be rich in G + C. This hypothesis is tested on a sample of 44 mammalian genes for which replication time data and sequence information are available. Early replicating genes do not appear to be more G + C rich than late replicating genes, instead there is considerable variation in the G + C content of genes replicated during both halves of S phase. These results show that both G + C rich and poor fractions of the genome are replicated early and late in the cell cycle, and suggest that isochores are not maintained by the replication of DNA sequences in compositionally biased free nucleotide pools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号