首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
重组卡介苗活疫苗的研究进展   总被引:2,自引:0,他引:2  
重组卡介苗(rBCG)是利用BCG活疫苗的优点和特性,借助分子生物学重组技术,将多种外源基因导入BCGDNA中,构成重组卡介菌多价活疫苗,期望实现以最少的免疫接种次数,获得抗多种疾病的持久免疫的目的。此研究进展较快,且初步研究结果已显示出rBCG广阔的应用前景,为新型疫苗的开发提供新途径。  相似文献   

2.
抗艾滋病分泌型重组BCG疫苗的研究进展   总被引:1,自引:0,他引:1  
抗艾滋病分泌型重组BCG疫苗,是一种含有分泌融合蛋白质的牛分枝杆菌BCG菌的疫苗。融合蛋白质是由外来抗原肽(艾滋病毒表面抗原肽)插入含有信号肽的载体蛋白(抗酸菌的α抗原)分子表面得到的。该疫苗能有效地诱导杀伤T细胞,显著提高抗体水平,用于艾滋病的预防和治疗。  相似文献   

3.
重组BCG疫苗的研究进展   总被引:6,自引:0,他引:6  
重组BCG疫苗的研究进展程继忠,皇甫永穆(同济医科大学实验医学研究中心医学分子生物研究室,武汉430030)疫苗是最经济有效的预防疾病的医学手段[1]。卡介苗(BCG)是分枝杆菌中牛结核杆菌的一种突变株,它具有的特点’可使之发展成为一种特别有吸引力的...  相似文献   

4.
将大鼠酰胺化酶的信号肽及前导肽编码序列引入昆虫核多角体病毒转移表达载体,构建PABChGRF(Gly)、PABCIGFI融合基因的昆虫细胞分泌表达质粒pBacPAG2、pBacPAI,并与经修饰的银纹夜蛾核多角体病毒BacPAK6线性化DNA共转染秋粘虫细胞Sf21,通过同源重组、筛选和鉴定,得到它们的重组病毒BacPAG、BacPAI。将重组病毒感染Sf21细胞,PABChGRF(Gly)和PABCIGFI均得到有效外泌表达,表达产物通过IgGSepharose柱可获得快速纯化。  相似文献   

5.
为探讨HCV/HBV 复合疫苗的可行性,将合成的丙型肝炎病毒(HCV)复合多表位抗原基因PCX与HBsAg 基因连接成PCXS基因,与β-半乳糖苷酶(GZ)基因融合后在大肠杆菌及减毒鼠伤寒沙门氏菌中获得表达.目的蛋白GZ-PCXS可被抗-HBs 及抗-HCV 抗体所特异识别.GZ-PCXS抗原皮下注射免疫ICR小鼠后,诱发了较高水平的抗-GZ-PCXSIgG反应.构建的重组减毒鼠伤寒沙门氏菌SL3261(pWR/PCXS)口服免疫小鼠后,诱发了高水平的CD8+ T细胞增殖反应及抗GZ-PCXSIgG反应.所有免疫小鼠均未见明显的毒副作用.该研究揭示,HCV/HBV 复合抗原可诱发特异性体液免疫及细胞免疫应答,而活菌苗口服可能是理想的免疫途径,为HCV/HBV 双价疫苗研究提供了一定的理论及实验依据.  相似文献   

6.
口服狂犬病疫苗   总被引:2,自引:1,他引:1  
口服狂犬病疫苗根据毒种类型分为二类:一类为减毒活疫苗,首先美国用ERA株在实验室研究成功,随后各国相继研究SAD株的突变株SADBern(或SADswiss),SADB_19、SAG_1以及CTN—1株口服狂犬病疫苗,均获得较好的口服免疫原性,对动物SADBern、SADB_19、SADswiss、CTN—1的毒性相近,而SAG_1的毒性最弱,对多种成年野生动物不致病。以上各株病毒分别被制成口服疫苗在世界许多地区得到试验和应用。另一类为重组基因工程口服疫苗,已将狂犬病毒的糖蛋白基因分别重组到人腺病毒5型,痘苗病毒、浣熊痘病毒、金丝雀痘病毒、多角体病毒中,并证实均有免疫原性,重组痘病毒VVTGgRAB制备的口服疫苗已在比利时进行大规模的区域性试验,具有有效性、无毒性和热稳定性。口服疫苗的诱饵多采用鸡头、蜡制或膨化食物外壳内包装有疫苗胶囊的复合体。  相似文献   

7.
重组BCG口服免疫诱导的细胞和体液免疫应答最近研究证明,外源基因能在牛分枝杆菌BCG中表达,用这些重组分枝杆菌免疫小鼠可诱导抗外来蛋白的细胞和抗体免疫应答。近年来的许多研究也证实了肠道和呼吸道粘膜淋巴系统在防御感染方面的贡献,因此,迫切需要能够刺激粘...  相似文献   

8.
日本血吸虫26kD抗原基因在BCG中的表达   总被引:5,自引:0,他引:5  
研究了外源基因日本血吸虫26kD抗原(Sj26GST)在卡介苗(bacilusCalmete-Guerin,BCG)、耻垢分枝杆菌(M.smegmatis)和大肠杆菌(E.coli)中的表达.运用重组DNA和聚合酶链反应(PCR)等分子生物学技术,以表达Sj26GST的E.colipGEX衍生质粒为模板,经PCR得到编码Sj26GST的全长cDNA片段.将其按正确的阅读框顺序,克隆到人结核杆菌热休克蛋白(heatshockprotein,HSP)70的启动子下游,再将HSP70启动子和Sj26GST基因一起亚克隆到E.coli-分枝杆菌穿梭质粒pBCG-2000中,得到E.coli-分枝杆菌穿梭表达质粒pBCG-Sj26.pBCG-Sj26电转化入BCG和M.smegmatismc2155中表达Sj26GST抗原,所表达的天然重组Sj26GST(rSj26GST)为可溶性蛋白,在SDS-PAGE上分子量为26kD处可见明显的表达蛋白带.其表达量分别占BCG和M.smegmatis菌体总蛋白的15%和10%.可见,Sj26GST基因能在BCG中高效表达.  相似文献   

9.
制备CVB3结构蛋白和非结构蛋白重组质粒DNA疫苗时,采用RT-PCR从CVB感染的HeLa细胞中扩增VP1、VP2、2A和3D基因,重组入真核表达质粒pcDNA3中,构建pcDNA3/VP2、pcDNA3/VP1、pcDNA3/2A和pcDNA3/3D重组质粒,经酶切和测下实扩增的序列并将各重组质粒体外转染真核细胞COS-7,用RT-PCR检测mRNA的转录,用Western-blot检测表达产物。结果4种重组质粒酶切出相应大小的目的片段,经测序证实为CVB3相应序列,Western-blot证实能够在体外真核细胞中表达。本文成功构建CVB3结构与非结构蛋白的重组质粒DNA疫苗,为进一步研究其免疫效果奠定了基础。  相似文献   

10.
将大肠杆菌HB101嗜碱转化子中质粒pGCA所携带的嗜碱基因亚克隆至双元载体pBI121质粒中,构建了植物表达载体pLGC重组质粒。用其转化大肠杆菌HB101获得了能在碱性和卡那霉素抗性平板上生长的转化子,再通过三亲交配法将亚克隆质粒pLGC转化进农杆菌LBA4404,又获得能在碱性平板和卡那霉素及利福平双抗平板上生长的转化子,Southern杂交结果表明HB101转化子亚克隆质粒pLGC是由来自  相似文献   

11.
Bacille Calmette-Guèrin (BCG), a live attenuated tubercle bacillus, is currently the most widely used vaccine in the world. Because of its unique characteristics, including low toxicity, adjuvant potential, and long-lasting immunity, BCG represents a novel vaccine vehicle with which to deliver protective antigens of multiple pathogens. We have developed episomal and integrative expression vectors employing regulatory sequences of major BCG heat shock proteins for stable maintenance and expression of foreign antigens in BCG vaccine strains (22). Shuttle plasmids capable of autonomous replication in Escherichia coli and BCG were constructed with a DNA cassette containing a minimal replicon derived from the Mycobacterium fortuitum plasmid pAL5000. Efficient and stable chromosomal integration of recombinant plasmids into BCG was achieved using a DNA segment containing the mycobacteriophage L5 attachment site and integrase coding sequence. Using the BCG hsp60 and hsp70 stress gene promoters, we were able to express Escherchia coli beta-galactosidase to levels in excess of 10% of total cell protein. The major antigens of HIV-1 gag, pol, and env were also stably expressed using our vector systems. The recombinant BCG elicited long-lasting humoral and cellular immune responses to these antigens in mice. Antibody responses to beta-galactosidase using as few as 200 colony-forming units were detected 6 weeks after immunization, and titers (1:30,000) were sustained for more than 10 weeks. Cellular immune responses, of both cytotoxic T cell (CTL) and helper T lymphocytes, were detected to beta-galactosidase. CTL responses were also induced to the HIV-1 envelope protein. Thus, we have demonstrated stable recombinant antigen expression, processing, and presentation using our recombinant BCG vector system. This live recombinant vector system shows promise as a universally applicable and safe vaccine vehicle for protection against various infectious diseases.  相似文献   

12.
Mycobacterium bovis Bacille Calmette Guérin (BCG) was first administered to humans in 1921 and has subsequently been delivered to an estimated 3 billion individuals, with a low incidence of serious complications. The vaccine is immunogenic and is stable and cheap to produce. Additionally, the vaccine can be engineered to express foreign molecules in a functional form, and this has driven the development of BCG as a recombinant vector to protect against infectious diseases and malignancies such as cancer. However, it is now clear that the existing BCG vaccine has proved insufficient to control the spread of tuberculosis, and a major focus of tuberculosis vaccine development programs is the construction and testing of modified forms of BCG. This review summarizes the strategies employed to develop recombinant forms of BCG and describes the potential of these vaccines to stimulate protective immunity and protect against Mycobacterium tuberculosis infection.  相似文献   

13.
Adjuvants in tuberculosis vaccine development   总被引:1,自引:0,他引:1  
Tuberculosis remains a major public health problem around the world. Because the Mycobacterium bovis Bacilli–Calmette–Guerin (BCG) vaccine fails to protect adults from pulmonary tuberculosis, there is an urgent need for improved vaccine formulations. Unlike BCG, recombinant vaccines purified from bacterial expression vectors, as well as naked DNA, require an additional adjuvant. Recent improvements in our understanding of disease immunopathology, together with advances in biochemical and molecular techniques, have permitted the successful development of promising tuberculosis vaccine delivery and adjuvant combinations for human use. Here, we summarize the current state of adjuvant development and its impact on tuberculosis vaccine progress.  相似文献   

14.
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials.  相似文献   

15.
Strain bacillus Calmette-Guerin (BCG) of Mycobacterium bovis has been used as a live bacterial vaccine to immunize more than 3 billion people against tuberculosis. In an attempt to use this vaccine strain as a vehicle for protective antigens, the gene encoding merozoite surface antigen 2 (MSA2) was amplified from strain FCC-1/HN Plasmodium falciparum genome, sequenced, and expressed in M. bovis BCG under the control of an expression cassette carrying the promoter of heat shock protein 70 (HSP70) from Mycobacterium tuberculosis. The recombinant shuttle plasmid pBCG/MSA2 was introduced into mycobacteria by electroporation, and the recombinant mycobacteria harboring pBCG/MSA2 could be induced by heating to express MSA2; the molecular mass of recombinant MSA2 was about 31 kDa. This first report of expression of the full-length P. falciparum MSA2 gene in BCG provides evidence for use of the HSP70 promoter in expressing a foreign gene in BCG and in development of BCG as a multivalent vectoral vaccine for malaria.  相似文献   

16.
Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4+- and CD8+-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding.  相似文献   

17.
mpt64-卡介苗重组疫苗的构建、免疫原性及抗结核作用   总被引:1,自引:0,他引:1  
通过基因工程重组技术将结核分枝杆菌保护性抗原MPT64的编码基因与穿梭质粒载体pYUB295重组,采用电穿孔技术将重组质粒导入到卡介苗中,应用聚合酶链反应(PCR)扩增、聚丙烯酰胺凝胶电泳(PAGE)对mpt64-卡介苗重组疫苗鉴定:成功地构建了MPT64基因pYUB295重组质粒,MPT64蛋白在卡介苗中能分泌表达....  相似文献   

18.
The current vaccine against tuberculosis, Mycobacterium bovis strain bacillus Calmette-Guerin (BCG), offers potential advantages as a live, innately immunogenic vaccine vehicle for expression and delivery of protective recombinant antigens. Malaria is one of the severest parasitic diseases in humans especially in the developing world. No efficacious vaccine is currently available. However, circumsporozoite protein (CSP) is a malaria vaccine candidate currently undergoing clinical trials. We analyzed the immune response to recombinant BCG (rBCG) vaccine expressing Plasmodium falciparum CSP (BCG-CSP) under the control of heat shock protein 70 promoter in BALB/c mice. The lymphocytes proliferative response to P. falciparum soluble antigen was significantly higher than those in the groups of BCG and normal saline, and the production of cytokines (IFN-gamma and IL-2) in response to malaria antigen was significantly higher in rBCG and BCG groups than control group of normal saline. A specific IgG antibody response against P. falciparum antigen of CSP was also characterized. The booster injection could enhance the production of cytokine, proliferation responses of spleen lymphocytes and the antibodies titer of BCG-CSP. The results in the study demonstrated that rBCG vaccine producing CSP is an appropriate vaccine for further evaluation in non-human primates.  相似文献   

19.
Mycobacterium bovis BCG has been proposed as an effective live vector for multivalent vaccines. The development of mycobacterial genetic systems to express foreign antigens and the adjuvanticity of BCG are the basis for the potential use of this attenuated mycobacterium as a recombinant vaccine vector. Stable plasmid vectors without antibiotic resistance markers are needed for heterologous antigen expression in BCG. Our group recently described the construction of a BCG expression system using auxotrophic complementation as a selectable marker. In this work, LipL32 and LigAni antigens of Leptospira interrogans were cloned and expressed in M. bovis BCG Pasteur and in the auxotrophic M. bovis BCG ΔleuD strains under the control of the M. leprae 18 kDa promoter. Stability of the plasmids during in vitro growth and after inoculation of the recombinant BCG strains in hamsters was compared. The auxotrophic complementation system was highly stable, even during in vivo growth, as the selective pressure was maintained, whereas the conventional vector was unstable in the absence of selective pressure. These results confirm the usefulness of the new expression system, which represents a huge improvement over previously described expression systems for the development of BCG into an effective vaccine vector.  相似文献   

20.
Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG) confers highly variable protection against pulmonary disease. An effective vaccination regimen would be the most efficient way to control the epidemic. However, BCG does confer consistent and reliable protection against disseminated disease in childhood, and most TB vaccine strategies being developed incorporate BCG to retain this protection. Cellular immunity is necessary for protection against TB and all the new vaccines in development are focused on inducing a strong and durable cellular immune response. There are two main strategies being pursued in TB vaccine development. The first is to replace BCG with an improved whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenuated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article reviews the leading candidate vaccines in development and considers the current challenges in the field with regard to efficacy testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号