首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cre/loxP system has become an important tool in designing postintegrational switch mechanisms for transgenes in mice. The power and spectrum of application of this system depends on transgenic mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. We have developed a novel mouse line that acts as a Cre reporter. The mice, designated Z/EG (lacZ/EGFP), express lacZ throughout embryonic development and adult stages. Cre excision, however, removes the lacZ gene, which activates expression of the second reporter, enhanced green fluorescent protein. We have found that the double-reporter Z/EG line is able to indicate the occurrence of Cre excision from early embryonic to adult lineages. The advantage of the Z/EG line is that Cre-mediated excision can be monitored in live samples and that live cells with Cre-mediated excision can be isolated using a single-step FACS. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.  相似文献   

2.
Chemical-regulated, site-specific DNA excision in transgenic plants   总被引:37,自引:0,他引:37  
We have developed a chemical-inducible, site-specific DNA excision system in transgenic Arabidopsis plants mediated by the Cre/loxP DNA recombination system. Expression of the Cre recombinase was tightly controlled by an estrogen receptor-based fusion transactivator XVE. Upon induction by beta-estradiol, sequences encoding the selectable marker, Cre, and XVE sandwiched by two loxP sites were excised from the Arabidopsis genome, leading to activation of the downstream GFP (green fluorescent protein) reporter gene. Genetic and molecular analyses indicated that the system is tightly controlled, showing high-efficiency inducible DNA excision in all 19 transgenic events tested with either single or multiple T-DNA insertions. The system provides a highly reliable method to generate marker-free transgenic plants after transformation through either organogenesis or somatic embryogenesis.  相似文献   

3.
Site- and time-specific gene targeting in the mouse   总被引:25,自引:0,他引:25  
The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type, will facilitate studies of gene function and the generation of animal models for human diseases. We have established a conditional site-specific recombination system in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand binding domain of the human estrogen receptor (ER), resulting in a tamoxifen-dependent Cre recombinase, Cre-ER(T), that is activated by tamoxifen, but not by estradiol. Transgenic mice were generated expressing Cre-ER(T) under the control of a cytomegalovirus promoter. Administration of tamoxifen to these transgenic mice induced excision of a chromosomally integrated gene flanked by loxP sites in a number of tissues, whereas no excision could be detected in untreated animals. However, the efficiency of excision varied between tissues, and the highest level (approximately 40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ER(T) in a given cell type, Cre-ER(T)-expressing mice were crossed with reporter mice in which expression of Escherichia coli beta-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. Site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ER(T). These results indicate that cell-specific expression of Cre-ER(T) in transgenic mice can be used for efficient tamoxifen-dependent Cre-mediated recombination at loci containing loxP sites, to generate site-specific somatic mutations in a spatiotemporally controlled manner. This conditional site-specific recombination system should allow the analysis of knockout phenotypes that cannot be addressed by conventional gene targeting.  相似文献   

4.
Cre重组酶结构与功能的研究进展   总被引:1,自引:0,他引:1  
Cre/loxP定位重组系统来源于噬菌体P1,由Cre重组酶和loxP位点两部分组成。在Cre重组酶的介导下,设定的DNA片段可以被切除,可以发生倒位,亦可造成定点的整合。由于其作用方式高效简单,Cre/loxP定位重组系统已在特定基因的删除、基因功能的鉴定、外源基因的整合、基因捕获及染色体工程等方面得到了有效的利用,在转基因的酵母、植物、昆虫、哺乳动物的体内外DNA重组方面成为一个有力的工具。这里就Cre重组酶的结构、功能及该定位重组系统的应用等方面的研究进行了综述。  相似文献   

5.
Cre-mediated site-specific recombination allows conditional transgene expression or gene knockouts in mice. Inducible Cre recombination systems have been developed to bypass initial embryonic lethal phenotypes and provide access to later embryonic or adult phenotypes. We have produced Cre transgenic mice in which excision is tamoxifen inducible and occurs in a widespread mosaic pattern. We utilized our Cre excision reporter system combined with an embryonic stem (ES) cell screen to identify ES cell clones with undetectable background Cre activity in the absence of tamoxifen but efficient excision upon addition of tamoxifen. The CreER transgenic mouse lines derived from the ES cells were tested using the Z/AP and Z/EG Cre reporter lines. Reporter gene expression indicated Cre excision was maximal in midgestation embryos by 2 days after tamoxifen administration, with an overall efficiency of 5-10% of cells with Cre excision. At 3 days after tamoxifen treatment most reporter gene expression marked groups of cells, suggesting an expansion of cells with Cre excision, and the proportion of cells with Cre excision was maintained. In adults, Cre excision was also observed with varying efficiencies in all tissues after tamoxifen treatment.  相似文献   

6.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

7.
DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other. In this study, we established four novel knock-in (KI) mouse strains in which VloxP-EGFP, SloxP-tdTomato, CAG-VCre, and CAG-SCre genes were inserted into the ROSA26 locus. VloxP-EGFP and SloxP-tdTomato KI mice were reporter mice carrying EGFP or tdTomato genes posterior to the stop codon, which was floxed by VloxP or SloxP fragments, respectively. CAG-VCre and CAG-SCre KI mice carried VCre or SCre genes that were expressed ubiquitously. These two reporter mice were crossed with three different deleter mice, CAG-VCre KI, CAG-SCre KI, and Cre-expressing transgenic mice. Through these matings, we found that VCre/VloxP and SCre/SloxP systems were functional in mice similar to Cre/loxP, and that the recombinases showed tight specificity for their recognition sequences. Our results suggest that these novel recombination systems allow highly sophisticated genome manipulations and will be useful for tracing the fates of multiple cell lineages or elucidating complex spatiotemporal regulations of gene expression.  相似文献   

8.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

9.
M. L. Siegal  D. L. Hartl 《Genetics》1996,144(2):715-726
Studies of gene function and regulation in transgenic Drosophila are often compromised by the possibility of genomic position effects on gene expression. We have developed a method, called transgene coplacement, in which any two sequences can be positioned at exactly the same site and orientation in the genome. Transgene coplacement makes use of the bacteriophage P1 system of Cre/loxP site-specific recombination, which we have introduced into Drosophila. In the presence of a cre transgene driven by a dual hsp70-Mos1 promoter, a white reporter gene flanked by loxP sites is excised with virtually 100% efficiency both in somatic cells and in germ cells. A strong maternal effect, resulting from Cre recombinase present in the oocyte, is observed as white or mosaic eye color in F(1) progeny. Excision in germ cells of the F(1) yields a strong grand-maternal effect, observed as a highly skewed ratio of eye-color phenotypes in the F(2) generation. The excision reactions of Cre/loxP and the related FLP/FRT system are used to create Drosophila lines in which transgenes are at exactly allelic sites in homologous chromosomes.  相似文献   

10.
位点特异重组系统由重组酶和相应的重组酶识别位点组成,通过两者间的相互作用,实现外源基因精确整合与切除等一系列遗传操作.主要可分为Cre/lox系统、FLP/frt系统、R/RS系统和Gin/gix系统.目前,研究最充分应用最广泛的位点特异重组系统为Cre/lox系统.此系统为位点特异重组系统家族中的一员,由38.5kDCre重组酶和34bplox位点组成,最早被应用于动物转基因研究,包括基因敲除、基因激活、基因易位等.近年来,随着研究的深入,Cre/lox系统被逐步应用到植物研究中,并在诸多领域取得重大进展.本文总结归纳了Cre/lox系统在定点整合、定点切除以及叶绿体转化等方面的最新研究成果,旨在为利用Cre/lox系统构建环境安全和高效表达的植物遗传转化体系提供参考.  相似文献   

11.
S Brecht  H Erdhart  M Soete  D Soldati 《Gene》1999,234(2):239-247
Site-specific DNA recombinases from bacteriophage and yeasts have been developed as novel tools for genome engineering both in prokaryotes and eukaryotes. The 38kDa Cre protein efficiently produces both inter- and intramolecular recombination between specific 34bp sites called loxP. We report here the in vivo use of Cre recombinase to manipulate the genome of the protozoan parasite Toxoplasma gondii. Cre catalyzes the precise removal of transgenes from T. gondii genome when flanked by two directly repeated loxP sites. The efficiency of excision has been determined using LacZ as reporter and indicates that it can easily be applied to the removal of undesired sequences such as selectable marker genes and to the determination of gene essentiality. We have also shown that the reversibility of the recombination reaction catalyzed by Cre offers the possibility to target site-specific integration of a loxP-containing vector in a chromosomally placed loxP target in the parasite. In mammalian systems, the Cre recombinase can be regulated by hormone and is used for inducible gene targeting. In T. gondii, fusions between Cre recombinase and the hormone-binding domain of steroids are constitutively active, hampering the utilization of this mode of post-translational regulation as inducible gene expression system.  相似文献   

12.
SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.  相似文献   

13.
L St-Onge  P A Furth    P Gruss 《Nucleic acids research》1996,24(19):3875-3877
Gene-targeted mice derived from embryonic stem cells are a useful tool to study gene function during development. However, if the mutation is embryonic lethal and the gene is deleted from the onset of development, later functions in adult animals cannot be studied. Recently, the bacterial Cre-loxP site-specific recombination system has successfully been used in transgenic animals to produce tissue-specific and temporal deletions [Gu et al. (1993) Cell, 73, 1155" Gu et al. (1994) Science, 265,103--106; Kuhn et al. (1995) Science, 269, 1427-1429]. We have evaluated the tetracycline responsive binary system [Gossen and Bujard (1992) Proc. Natl. Acad. Sci. USA, 89, 5547-5551] for its ability to transiently express the Cre recombinase in transgenic mice. In this system, a transactivator fusion protein composed of the tetracycline repressor (tetR) and the acidic domain of the herpes simplex viral protein 16 (VP16) can regulate the expression of the Cre gene from a promoter containing tet-operator (tetO) sequences. In the absence of tetracycline, the Cre gene is expressed and will induce site-specific recombination between two loxP sites. In the presence of tetracycline, the Cre gene will not be expressed and recombination will not occur.  相似文献   

14.
Pan X  Wan H  Chia W  Tong Y  Gong Z 《Transgenic research》2005,14(2):217-223
To test the Cre/loxP recombination system in zebrafish, a stable transgenic zebrafish line was developed by using a floxed (loxP flanked) gfp(green fluorescent protein) gene construct under the muscle-specific mylz2 promoter. Like our previous non-floxed gfp transgenic line under the same promoter, the new transgenic line expresses GFP reporter faithfully in fast skeletal muscles to the same intensity. To demonstrate the excision of floxed gfp transgene, in vitro synthesized Cre RNA was injected into embryos of floxed gfp transgenic zebrafish and we found a dramatic reduction of GFP expression. To confirm the excision, PCR was performed and a DNA fragment of correct size was amplified as predicted from the Cre/loxP mediated excision. Finally, we cloned the fragment and sequence information confirmed that the excision occurred at the precise site as predicted. Our experiments demonstrated that the Cre/loxP system can function efficiently and accurately in the zebrafish system.  相似文献   

15.
It is generally believed that too high or low levels of endothelin-1 (ET-1), a strong vasoconstrictor, may be detrimental to animals. Therefore, in order to understand the in vivo function of ET-1, we used a conditional transgenic approach, Cre/loxP recombination system, to generate transgenic mice that over-express ET-1 in a tissue-specific manner. In such a strategy a single transgenic mouse line, ELSE, was initially generated where a general promoter, human elongation factor 1alpha (hEF1alpha) promoter, was used to drive the expression of a loxP-flanked sequence containing the lacZ reporter gene and a STOP cassette before the ET-1 cDNA, the recombinational competency of which was confirmed in an Escherichia coli test system. In ELSE mice, expression of the reporter lacZ was limited to spermatozoa and spermatogonia as well as Sertoli, Leydig and endothelial cells in the testis, thus confirming the suitability of these mice for the generation of testes-limited ET-1 expression. To generate transgenic progeny with ET-1 over-expression in the testis (successful recombination, ELSE/ELT), ELSE mice were mated with EIIa-cre mice expressing Cre recombinase in pre-implantation mouse embryos. These ELSE/ELT mice exhibiting testis-specific ET-1 over-expression had normal reproductive function and showed no obvious alterations in gross testicular morphology. Although over-expression of ET-1 leads to reduction of testicular blood flow, young adult ELSE/ELT mice showed no obvious signs of inflammation, fibrosis or abnormal proliferation of cells in the testes of young ELSE/ELT mice by histochemical analyses.  相似文献   

16.
A transgenic mouse line that expresses Cre recombinase under control of the human thyroid peroxidase (TPO) gene promoter was established. The activity and specificity of the TPO-driven Cre recombinase were examined by using Northern blotting and by crossing with the ROSA26 reporter transgenic mouse line. In the latter mice, Cre-mediated recombination occurred only in the thyrocytes, and recombination commenced around embryonic day 14.5, at the time during thyroid organogenesis when TPO expression begins. This study demonstrates that the TPO-Cre transgenic mouse is a powerful tool to specifically delete loxP-inserted (floxed) genes in thyrocytes and will be of great value in the study of thyrocyte-specific genes during development and/or in adult thyroids.  相似文献   

17.
The study of gene functions in complex genetic environments such as mammalian cells would greatly benefit from systems allowing a tight control of gene expression. The tetracycline-inducible gene expression system and the site-specific Cre/loxP recombination system have gained increasing popularity for conditional expression and gene disruption. To facilitate the analysis of gene functions in a cell autonomous system, we have established an F9 murine embryonal carcinoma cell line, constitutively expressing both the doxycycline-controlled transactivator rtTA and the tamoxifen-dependent Cre recombinase Cre-ER(T). The expression of a reporter gene placed under the control of tetracycline operators was induced about 1000-fold by doxycycline, and tamoxifen-induced excision of a loxP-flanked DNA segment occurred in all cells. This genetically engineered cell line, which allows, upon simple ligand addition, sophisticated genetic manipulations, such as sequential inactivation of loxP-flanked genes, and tightly controlled reexpression of their cDNAs, should be a valuable tool for studying mammalian gene functions.  相似文献   

18.
A mutational analysis of the bacteriophage P1 recombinase Cre   总被引:12,自引:0,他引:12  
Bacteriophage P1 encodes a 38,600 Mr site-specific recombinase, Cre, that is responsible for reciprocal recombination between sites on the P1 DNA called loxP. Using in vitro mutagenesis 67 cre mutants representing a total of 37 unique changes have been characterized. The mutations result in a wide variety of phenotypes as judged by the varying ability of each mutant Cre protein to excise a lacZ gene located between two loxP sites in vivo. Although the mutations are found throughout the entire cre gene, almost half are located near the carboxyl terminus of the protein, suggesting a region critical for recombinase function. DNA binding assays using partially purified mutant proteins indicate that mutations in two widely separated regions of the protein each result in loss of heparin-resistant complexes between Cre and a loxP site. These results suggest that Cre may contain two separate domains, both of which are involved in binding to loxP.  相似文献   

19.
Neural crest cells are embryonic, multipotent stem cells that give rise to various cell/tissue types and thus serve as a good model system for the study of cell specification and mechanisms of cell differentiation. For analysis of neural crest cell lineage, an efficient method has been devised for manipulating the mouse genome through the Cre-loxP system. We generated transgenic mice harboring a Cre gene driven by a promoter of protein 0 (P0). To detect the Cre-mediated DNA recombination, we crossed P0-Cre transgenic mice with CAG-CAT-Z indicator transgenic mice. The CAG-CAT-Z Tg line carries a lacZ gene downstream of a chicken beta-actin promoter and a "stuffer" fragment flanked by two loxP sequences, so that lacZ is expressed only when the stuffer is removed by the action of Cre recombinase. In three different P0-Cre lines crossed with CAG-CAT-Z Tg, embryos carrying both transgenes showed lacZ expression in tissues derived from neural crest cells, such as spinal dorsal root ganglia, sympathetic nervous system, enteric nervous system, and ventral craniofacial mesenchyme at stages later than 9.0 dpc. These findings give some insights into neural crest cell differentiation in mammals. We believe that P0-Cre transgenic mice will facilitate many interesting experiments, including lineage analysis, purification, and genetic manipulation of the mammalian neural crest cells.  相似文献   

20.
Organ-specific expression of a Cre recombinase allows the analysis of gene function in a particular tissue or cell type. Using a 6.1 kb promoter from the mouse tyrosinase gene, we generated and characterized two lines of transgenic mice that express Cre recombinase in melanoblasts. Utilizing a Cre-responsive reporter mouse strain, genetic recombination was detected in the melanoblasts of the skin from embryonic day 11.5. In addition, Cre-expression was detected in the skin and eyes of mice. Cre transgene activity was occasionally detected in the brain and peripheral nerves but not in other tissues. When Tyr::Cre mice were crossed with mice carrying a homozygous loxP conditional mutation for the insulin-like growth factor receptor gene (Igf1r), Cre-melanoblast-specific recombination pattern was confirmed and no abnormal phenotype was observed. In conclusion, Tyr::Cre transgenic mice provide a valuable tool to follow the cell lineage and to examine gene function in melanocyte development and transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号