首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Cre/loxP site-specific recombination system combined with embryonic stem cell-mediated technologies has greatly expanded our capability to address normal and disease development in mammals using genetic approaches. The success of this emerging technology hinges on the production of Cre-expressing transgenic lines that provide cell type-, tissue-, or developmental stage-specific recombination between loxP sites placed in the genome. Here we describe and characterize the production of a double-reporter mouse line that provides a convenient and reliable readout of Cre recombinase activity. Throughout all embryonic and adult stages, the transgenic animal expresses the lacZ reporter gene before Cre-mediated excision occurs. Cre excision, however, removes the lacZ gene, allowing expression of the second reporter, the human alkaline phosphatase gene. This double-reporter transgenic line is able to indicate the occurrence of Cre excision in an extremely widespread manner from early embryonic to adult lineages. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.  相似文献   

2.
Cre-mediated site-specific recombination allows conditional transgene expression or gene knockouts in mice. Inducible Cre recombination systems have been developed to bypass initial embryonic lethal phenotypes and provide access to later embryonic or adult phenotypes. We have produced Cre transgenic mice in which excision is tamoxifen inducible and occurs in a widespread mosaic pattern. We utilized our Cre excision reporter system combined with an embryonic stem (ES) cell screen to identify ES cell clones with undetectable background Cre activity in the absence of tamoxifen but efficient excision upon addition of tamoxifen. The CreER transgenic mouse lines derived from the ES cells were tested using the Z/AP and Z/EG Cre reporter lines. Reporter gene expression indicated Cre excision was maximal in midgestation embryos by 2 days after tamoxifen administration, with an overall efficiency of 5-10% of cells with Cre excision. At 3 days after tamoxifen treatment most reporter gene expression marked groups of cells, suggesting an expansion of cells with Cre excision, and the proportion of cells with Cre excision was maintained. In adults, Cre excision was also observed with varying efficiencies in all tissues after tamoxifen treatment.  相似文献   

3.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

4.
A global double-fluorescent Cre reporter mouse   总被引:1,自引:0,他引:1  
The Cre/loxP system has been used extensively for conditional mutagenesis in mice. Reporters of Cre activity are important for defining the spatial and temporal extent of Cre-mediated recombination. Here we describe mT/mG, a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato (mT) prior to Cre-mediated excision and membrane-targeted green fluorescent protein (mG) after excision. We show that reporter expression is nearly ubiquitous, allowing visualization of fluorescent markers in live and fixed samples of all tissues examined. We further demonstrate that mG labeling is Cre-dependent, complementary to mT at single cell resolution, and distinguishable by fluorescence-activated cell sorting. Both membrane-targeted markers outline cell morphology, highlight membrane structures, and permit visualization of fine cellular processes. In addition to serving as a global Cre reporter, the mT/mG mouse may also be used as a tool for lineage tracing, transplantation studies, and analysis of cell morphology in vivo.  相似文献   

5.
Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .  相似文献   

6.
A transgenic mouse line that expresses Cre recombinase under control of the human thyroid peroxidase (TPO) gene promoter was established. The activity and specificity of the TPO-driven Cre recombinase were examined by using Northern blotting and by crossing with the ROSA26 reporter transgenic mouse line. In the latter mice, Cre-mediated recombination occurred only in the thyrocytes, and recombination commenced around embryonic day 14.5, at the time during thyroid organogenesis when TPO expression begins. This study demonstrates that the TPO-Cre transgenic mouse is a powerful tool to specifically delete loxP-inserted (floxed) genes in thyrocytes and will be of great value in the study of thyrocyte-specific genes during development and/or in adult thyroids.  相似文献   

7.
Neural crest cells are embryonic, multipotent stem cells that give rise to various cell/tissue types and thus serve as a good model system for the study of cell specification and mechanisms of cell differentiation. For analysis of neural crest cell lineage, an efficient method has been devised for manipulating the mouse genome through the Cre-loxP system. We generated transgenic mice harboring a Cre gene driven by a promoter of protein 0 (P0). To detect the Cre-mediated DNA recombination, we crossed P0-Cre transgenic mice with CAG-CAT-Z indicator transgenic mice. The CAG-CAT-Z Tg line carries a lacZ gene downstream of a chicken beta-actin promoter and a "stuffer" fragment flanked by two loxP sequences, so that lacZ is expressed only when the stuffer is removed by the action of Cre recombinase. In three different P0-Cre lines crossed with CAG-CAT-Z Tg, embryos carrying both transgenes showed lacZ expression in tissues derived from neural crest cells, such as spinal dorsal root ganglia, sympathetic nervous system, enteric nervous system, and ventral craniofacial mesenchyme at stages later than 9.0 dpc. These findings give some insights into neural crest cell differentiation in mammals. We believe that P0-Cre transgenic mice will facilitate many interesting experiments, including lineage analysis, purification, and genetic manipulation of the mammalian neural crest cells.  相似文献   

8.
9.
The Cre/loxP system is a strategy for controlling temporal and/or spatial gene expression through genome alteration in mice. As successful Cre/loxP genome alteration depends on Cre-driver mice, Cre-reporter mice are essential for validation of Cre gene expression in vivo. In most Cre-reporter mouse strains, although the presence of reporter product indicates the expression of Cre recombinase, it has remained unclear whether a lack of reporter signal indicates either no Cre recombinase expression or insufficient reporter gene promoter activity. We produced a novel ROSA26 knock-in Cre-reporter C57BL/6N strain exhibiting green emission before and red after Cre-mediated recombination, designated as strain R26GRR. Ubiquitous green fluorescence and no red fluorescence were observed in R26GRR mice. To investigate the activation of tdsRed, EGFP-excised R26GRR, R26RR, mice were produced through the crossing of C57BL/6N mice with R26GRR/Ayu1-Cre F1 mice. R26RR mice showed extraordinarily strong red fluorescence in almost all tissues examined, suggesting ubiquitous activation of the second reporter in all tissues after Cre/loxP recombination. Moreover, endothelial cell lineage and pancreatic islet-specific expression of red fluorescence were detected in R26GRR/Tie2-Cre F1 mice and R26GRR /Ins1-Cre F1 mice, respectively. These results indicated that R26GRR mice are a useful novel Cre-reporter mouse strain. In addition, R26GRR mice with a pure C57BL/6N background represent a valuable source of green-to-red photoconvertible cells following Cre/loxP recombination for application in transplantation studies. The R26GRR mouse strain will be available from RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/).  相似文献   

10.
To introduce restricted DNA recombination events into catecholaminergic neurons using the Cre/loxP technology, we generated transgenic mice carrying the Cre recombinase gene driven by a 9 kb rat tyrosine hydroxylase (TH) promoter. Immunohistochemistry performed on transgenic mouse brain sections revealed a high number of cells expressing Cre in areas where TH is normally expressed, including the olfactory bulb, hypothalamic and midbrain dopaminergic neurons, and the locus coeruleus. Double immunohistochemistry and immunofluorescence indicated that colocalization of TH and Cre is greater than 80%. Cre expression was also found in TH-positive amacrine neurons of the retina, chromaffin cells of the adrenal medulla, and sympathetic ganglia. We crossbred TH-Cre mice with the floxed reporter strain Z/AP and observed efficient Cre-mediated recombination in all areas expressing TH, indicating that transgenic Cre is functional. Therefore, we have generated a valuable transgenic mouse strain to induce specific mutations of "floxed" genes in catecholaminergic neurons.  相似文献   

11.
Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.  相似文献   

12.
Site- and time-specific gene targeting in the mouse   总被引:25,自引:0,他引:25  
The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type, will facilitate studies of gene function and the generation of animal models for human diseases. We have established a conditional site-specific recombination system in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand binding domain of the human estrogen receptor (ER), resulting in a tamoxifen-dependent Cre recombinase, Cre-ER(T), that is activated by tamoxifen, but not by estradiol. Transgenic mice were generated expressing Cre-ER(T) under the control of a cytomegalovirus promoter. Administration of tamoxifen to these transgenic mice induced excision of a chromosomally integrated gene flanked by loxP sites in a number of tissues, whereas no excision could be detected in untreated animals. However, the efficiency of excision varied between tissues, and the highest level (approximately 40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ER(T) in a given cell type, Cre-ER(T)-expressing mice were crossed with reporter mice in which expression of Escherichia coli beta-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. Site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ER(T). These results indicate that cell-specific expression of Cre-ER(T) in transgenic mice can be used for efficient tamoxifen-dependent Cre-mediated recombination at loci containing loxP sites, to generate site-specific somatic mutations in a spatiotemporally controlled manner. This conditional site-specific recombination system should allow the analysis of knockout phenotypes that cannot be addressed by conventional gene targeting.  相似文献   

13.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

14.
Weber T  Schönig K  Tews B  Bartsch D 《PloS one》2011,6(11):e28283
The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.  相似文献   

15.
Here we describe the generation of the Nes-Cre1 transgenic mouse line in which Cre recombinase expression is controlled by the rat nestin promoter and intron 2 enhancer. This line has previously been used for conditional loss-of-function studies of various genes in the central nervous system and first branchial arch ectoderm. Here we report the detailed temporal and spatial recombination pattern of Nes-Cre1 using three different reporters of Cre-mediated recombination, ROSA26R (R26R), Z/AP, and Z/EG. Cre/loxP recombination was detected in embryos as early as the head-fold stage. By embryonic day (E)15.5 recombination occurred in virtually all cells of the nervous system and unexpectedly also in somite-derived tissues and kidneys. Tissues with little or no recombination included heart, liver, thymus, and lung. This study suggests that Nes-Cre1-mediated recombination occurs in progenitor cell types present in the neuroectoderm, the developing mesonephros, and the somites.  相似文献   

16.
We employed the Cre recombinase/loxP system to create a mouse line in which PKA activity can be inhibited in any cell-type that expresses Cre recombinase. The mouse line carries a mutant Prkar1a allele encoding a glycine to aspartate substitution at position 324 in the carboxy-terminal cAMP-binding domain (site B). This mutation produces a dominant negative RIα regulatory subunit (RIαB) and leads to inhibition of PKA activity. Insertion of a loxP-flanked neomycin cassette in the intron preceding the site B mutation prevents expression of the mutant RIαB allele until Cre-mediated excision of the cassette occurs. Embryonic stem cells expressing RIαB demonstrated a reduction in PKA activity and inhibition of cAMP-responsive gene expression. Mice expressing RIαB in hepatocytes exhibited reduced PKA activity, normal fasting induced gene expression, and enhanced glucose disposal. Activation of the RIαB allele in vivo provides a novel system for the analysis of PKA function in physiology.  相似文献   

17.
It is generally believed that too high or low levels of endothelin-1 (ET-1), a strong vasoconstrictor, may be detrimental to animals. Therefore, in order to understand the in vivo function of ET-1, we used a conditional transgenic approach, Cre/loxP recombination system, to generate transgenic mice that over-express ET-1 in a tissue-specific manner. In such a strategy a single transgenic mouse line, ELSE, was initially generated where a general promoter, human elongation factor 1alpha (hEF1alpha) promoter, was used to drive the expression of a loxP-flanked sequence containing the lacZ reporter gene and a STOP cassette before the ET-1 cDNA, the recombinational competency of which was confirmed in an Escherichia coli test system. In ELSE mice, expression of the reporter lacZ was limited to spermatozoa and spermatogonia as well as Sertoli, Leydig and endothelial cells in the testis, thus confirming the suitability of these mice for the generation of testes-limited ET-1 expression. To generate transgenic progeny with ET-1 over-expression in the testis (successful recombination, ELSE/ELT), ELSE mice were mated with EIIa-cre mice expressing Cre recombinase in pre-implantation mouse embryos. These ELSE/ELT mice exhibiting testis-specific ET-1 over-expression had normal reproductive function and showed no obvious alterations in gross testicular morphology. Although over-expression of ET-1 leads to reduction of testicular blood flow, young adult ELSE/ELT mice showed no obvious signs of inflammation, fibrosis or abnormal proliferation of cells in the testes of young ELSE/ELT mice by histochemical analyses.  相似文献   

18.
Oocyte-specific deletion of ovarian genes using Cre/loxP technology provides an excellent tool to understand their physiological roles during folliculogenesis, oogenesis, and preimplantation embryonic development. We have generated a transgenic mouse line expressing improved Cre recombinase (iCre) driven by the mouse growth differentiation factor-9 (GDF-9) promoter. The resulting transgenic mouse line was named GDF-9-iCre mice. Using the floxed ROSA reporter mice, we found that Cre recombinase was expressed in postnatal ovaries, but not in heart, liver, spleen, kidney, and brain. Within the ovary, the Cre recombinase was exclusively expressed in the oocytes of primordial follicles and follicles at later developmental stages. The expression of iCre of GDF-9-iCre mice was shown to be earlier than the Cre expression of Zp3Cre and Msx2Cre mice, in which the Cre gene is driven by zona pellucida protein 3 (Zp3) promoter and a homeobox gene Msx2 promoter, respectively, in the postnatal ovary. Breeding wild-type males with heterozygous floxed germ cell nuclear factor (GCNF) females carrying the GDF-9-iCre transgene did not produce any progeny having the floxed GCNF allele, indicating that complete deletion of the floxed GCNF allele can be achieved in the female germline by GDF-9-iCre mice. These results suggest that GDF-9-iCre mouse line provides an excellent genetic tool for understanding functions of oocyte-expressing genes involved in folliculogenesis, oogenesis, and early embryonic development. Comparison of the ontogeny of the Cre activities of GDF-9-iCre, Zp3Cre, and Msx2Cre transgenic mice shows there is sequential Cre activity of the three transgenes that will allow inactivation of a target gene at different points in folliculogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号