首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethylene Production and Respiratory Behavior of the rin Tomato Mutant   总被引:17,自引:13,他引:4       下载免费PDF全文
Little or no change in ethylene or CO2 production occurred in rin tomato mutant fruits monitored for up to 120 days after harvest. Of the abnormally ripening tomatoes investigated, including “Never ripe” (Nr Y a h, Nr c l2 r), “Evergreen” (gf r) and “Green Flesh” (gf), only rin did not show a typical climacteric and ethylene rise.  相似文献   

2.
We have purified pectin methylesterase (PME; EC 3.1.11) from mature green (MG) tomato (Lycopersicon esculentum Mill. cv Rutgers) pericarp to an apparent homogeneity, raised antibodies to the purified protein, and isolated a PME cDNA clone from a λgtll expression library constructed from MG pericarp poly(A)+ RNA. Based on DNA sequencing, the PME cDNA clone isolated in the present study is different from that cloned earlier from cv Ailsa Craig (J Ray et al. [1989] Eur J Biochem 174:119-124). PME antibodies and the cDNA clone are used to determine changes in PME gene expression in developing fruits from normally ripening cv Rutgers and ripening-impaired mutants ripening inhibitor (rin), nonripening (nor), and never ripe (Nr). In Rutgers, PME mRNA is first detected in 15-day-old fruit, reaches a steady-state maximum between 30-day-old fruit and MG stage, and declines thereafter. PME activity is first detectable at day 10 and gradually increases until the turning stage. The increase in PME activity parallels an increase in PME protein; however, the levels of PME protein continue to increase beyond the turning stage while PME activity begins to decline. Patterns of PME gene expression in nor and Nr fruits are similar to the normally ripening cv Rutgers. However, the rin mutation has a considerable effect on PME gene expression in tomato fruits. PME RNA is not detectable in rin fruits older than 45 days and PME activity and protein begin showing a decline at the same time. Even though PME activity levels comparable to 25-day-old fruit were found in root tissue of normal plants, PME protein and mRNA are not detected in vegetative tissues using PME antibodies and cDNA as probes. Our data suggest that PME expression in tomato pericarp is highly regulated during fruit development and that mRNA synthesis and stability, protein stability, and delayed protein synthesis influence the level of PME activity in developing fruits.  相似文献   

3.
Enzymes of Botrytis cinerea were detected in vitro using various carbon sources. Pectin-pectate as a sole carbon source induced both polygalacturonase (PG) and pectin lyase (PL) activity, whereas carboxymethylcellulose served as an inducer for cellulase (Cx) activity. PG activity appeared earlier than Cx activity when induced by their respective sources. Both PG and PL activities were detected earlier and their level was higher on cell walls of the normal tomato fruit, than of the nor mutant, and in each case activity was higher on cell walls of the mature fruits than of the mature-green ones. Whereas relatively high rates of PG and PL activity were recorded on autoclaved tomato homogenate (TH) of both the normal and the nor fruits, only trace levels of PG activity were recorded on unautoclaved media, except for those prepared from ripe normal fruits, and no PL activity was detected on either of the unsterilized media. Botrytis-infection resulted in PG activity in the enzyme-less rin and nor mutant fruits at both stages of maturity and in the normal and hybrid fruits at their mature-green stage. In the ripe normal and hybrid fruits, infection increased the level of PG activity recorded prior to inoculation. An association was drawn between the low PG activity recorded in the nor mutant and its hybrid at initial stages of invasion and their resistance to infection. Following infection an increase in the level of Cx activity over that recorded in healthy fruits was found in all the tomato genotypes, whereas no PL was recorded in either healthy or infected fruits.  相似文献   

4.
Scions of the non-ripening rin and nor tomato strains (Lycopersicum esculentum Mill.) were grafted on normal understock plants (cv. Rutgers) in an effort to study the influence of roots and vegetative tissue on the ripening behavior of the tomato fruit. Receiprocal grafts of ‘Rutgers’ scions on rin and nor understocks as well as grafted and ungrafted controls were also established. No alteration in the ethylene, and CO2 evolution and color development of either mutant fruits on normal understock or of normal fruits on mutant understock occurred. We suggest that the inability of rin and nor mutant fruits to ripen normally stems either from the presence in mutant fruit of a non-translocatable ripening inhibitor, or from the absence of a non-translocatable ripening factor.  相似文献   

5.
Analysis of Ca and other inorganic ions in the pericarp of rin, a nonripening mutant, and normal tomato (Lycopersicon esculentum Mill) fruits revealed significant differences in their accumulations at advanced stages of fruit development. During early stages of fruit development, soluble Ca was higher in Rutgers and there were no detectable changes in the accumulation patterns of the other inorganic ions. In the mutant rin, bound Ca continued to increase with age and it was twice as high as compared to earlier stages. In the normal tomato, bound Ca decreased about 3-fold at later stages of development. Mg and Mn also showed some changes similar to Ca. K continued to increase with age and the mutant rin had lower levels than Rutgers throughout development. Other ions such as P, Zn, Cu, and Co were similar in the mutant and normal fruits. These results are interpreted as indicating that high levels of bound divalent cations in the mutant rin may be associated with an altered membrane and cell wall and play a role in fruit ripening.  相似文献   

6.
Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant.  相似文献   

7.
Alcobaca is commonly regarded as an abnormally ripening mutant of the tomato (Lycopersicon esculentum Mill.). Alcobaca fruits were found to be similar to cv. Rutgers fruits in the following characteristics: time between full anthesis and the onset of ripening, response to ethephon, flavor, pH and concentrations of titratable acids, total soluble solids and reducing sugars. The pattern of CO2 and ethylene climacteric are similar in the two plant types, but the peak levels were lower and occurred later in alcobaca than in ‘Rutgers’. The mutant fruits differed from fruits of normal varieties in their greatly prolonged shelf life, their relatively low activity of polygalacturonase (PG) and polymethylgalacturonase (PMG), and their low level of endogenous ethylene. Fruits of the mutant harvested before the onset of ripening failed to reach normal pigmentation and remained yellow. Fruits harvested at the onset of ripening reached an orange color, while fruits ripened while attached to the plant reached almost normal pigmentation. These results suggest that alcobaca is a slow ripening mutant and does not belong to the category of non-ripening mutants.  相似文献   

8.
We have previously described the construction and expression of a chimeric gene that allows developmentally regulated expression of tomato (Lycopersicon esculentum) polygalacturonase in ripening-impaired, mutant (rin) tomato fruit (JJ Giovannoni, D DellaPenna, AB Bennett, RL Fischer [1989] The Plant Cell 1: 53-63). We now show that expression of the chimeric polygalacturonase gene in rin tomato fruit resulted in the accumulation of all three polygalacturonase isozymes (PG1, PG2A, and PG2B). Polyuronide solubilization and polyuronide depolymerization both reached their maximal levels in transgenic rin fruit prior to the appearance of PG2 isozymes. These results demonstrate that PG1, PG2A, and PG2B all arise by differential processing of a single gene product and further suggest that the PG1 isozyme is sufficient to carry out both polyuronide solubilization and depolymerization in vivo.  相似文献   

9.
This work tested one aspect of the relations between membrane permeability and fruit ripening. Membrane permeability was measured as [3H]water efflux rate from preloaded fruit pericarp disks. Different stages of fruit development were compared between two tomato (Lycopersicon esculentum Mill) strains: the normal Rutgers and the isogenic nonripening rin strain. The first significant increase in permeability was measured in Rutgers tissue at 110% of development, after fruit ripening had already begun as indicated by ethylene and CO2 evolution and lycopene synthesis. The rin did not show any increase in tissue permeability during fruit development or maturation.  相似文献   

10.
Continuous application of propylene to 40 to 80% mature fruits of normal tomato strains (Lycopersicon esculentum Mill.) advanced ripening in fruits of all ages by at least 50%. Although preclimacteric respiration was stimulated by propylene treatment, there was no concomitant increase in ethylene production. Once ripening commenced, the rates of endogenous ethylene production were similar in both propylene-treated and untreated fruits. Continuous exposure to propylene also stimulated respiration in immature fruits of rin, a nonripening mutant. Although respiration reached rates similar to those during the climacteric of comparable normal fruits there was no change in endogenous ethylene production which remained at a low level. Internal ethylene concentrations in attached 45 to 75% mature fruits of rin and a normal strain were similar. It is suggested that the onset of ripening in normal tomato fruit is not controlled by endogenous ethylene, although increased ethylene production is probably an integral part of the ripening processes.  相似文献   

11.
Paull RE  Chen NJ 《Plant physiology》1983,72(2):382-385
Pectin methylesterase (PME), polygalacturonase (PG), xylanase, cellulase, and proteinase activity were determined and related to respiration, ethylene evolution, and changes in skin color of papaya (Carica papaya L.) fruit from harvest through to the start of fruit breakdown. PME gradually increased from the start of the climacteric rise reaching a peak 2 days after the respiratory peak. PG and xylanase were not detectable in the preclimacteric stage but increased during the climacteric: during the post climacteric stage, the PG declined to a level one-quarter of peak activity with xylanase activity returning to zero. Cellulase activity gradually increased 3-fold after harvest to peak at the same time as PME, 2 days after the edible stage. Proteinase declined throughout the climacteric and postclimacteric phases. A close relationship exists between PG and xylanase and the rise in respiration, ethylene evolution, and softening. Cultivar differences in postclimacteric levels of enzymic activity were not detected.

An inhibitor of cellulase activity was detected in preclimacteric fruit. The inhibitor was not benzyl isothiocyanate (BITC). BITC did inhibit PG activity, though no inhibitor of PG activity was detected in preclimacteric homogenates when BITC was highest. The results indicate that inhibitors did not play a direct role in controlling wall softening.

  相似文献   

12.
Changes in the galactose content of the noncellulosic polysaccharides of tomato (Mill) fruit cell walls were analyzed under various conditions. On the plant, galactan decreased gradually during fruit growth. As normal fruits ripened, the loss of galactan increased sharply; this was not observed in attached rin fruits beyond the fully mature stage. The ability to produce new wall galactan in vitro was retained in mature fruit tissue but declined with ripening. Normal tomatoes ripening on the plant showed a transient increase in galactan content at the climacteric. It is suggested that the decline in wall galactan is partly due to reduced synthesis in senescing, normal fruits and in detached rin tomatoes.  相似文献   

13.
Free methionine levels in rin and normal tomato fruits were determined microbiologically. Similar levels (1750 μg/100 g fresh weight) for mature green fruits of both rin and a normal isogenic line suggest that the lack of ripening of rin fruits is not due to low methionine levels. Methionine levels of mature green rin and normal fruits were 1750 μg/ 100 g fresh weight. Normal fruits ripened either on or off the vine were 2860 and 2500 μg/100 g fresh weight, respectively. The rin fruits which were left on the plant or held in air at 20 C until soft and yellow were significantly lower in methionine than C2H4-treated rin fruits or any normal fruits. Harvested rin and normal fruits held at 20 C in continuously applied ethylene (10 μl/l) had higher methionine levels than comparable air controls; levels in treated rin fruits were significantly higher than those in normal fruits.  相似文献   

14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase, catalase, glycolate oxidase, and hydroxypyruvate reductase activities on a protein and fresh weight basis were measured over seven stages of tomato fruit development and ripening. Ribulose-1,5-bisphosphate carboxylase decreased steadily during fruit development from 23 ± 8 nmoles per minute per milligram protein at the mature green stage to 13.4 ± 2 at the table ripe stage. There was no change in partially purified preparations of the enzyme in the ratio of carboxylase to oxygenase activity, which was about 10. Catalase activity reached a maximum during the climacteric, simultaneously with increased ethylene and CO2 formation. Glycolate oxidase activity decreased during early stages of development and was barely detectable at the climacteric. Hydroxypyruvate reductase, associated with serine formation by the glycerate pathway, increased in specific activity during early stages of tomato fruit ripening. In the fruit of the rin tomato mutant, which does not ripen normally, none of these changes in enzyme activity occurred.  相似文献   

15.
The intact fruits of preclimacteric tomato (Lycopersicon esculentum Mill) or cantaloupe (Cucumis melo L.) produced very little ethylene and had low capability of converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. When these unripe tomato or cantaloupe fruits were treated with ethylene for 16 hours there was no increase in ACC content or in ethylene production rate, but the tissue's capability to convert ACC to ethylene increased markedly. Such an effect was also observed in fruits of tomato mutants rin and nor, which do not undergo ripening and the climacteric increase in ethylene production during the senescence. The development of this ethylene-forming capability induced by ethylene increased with increasing ethylene concentration (from 0.1 to 100 microliters per liter) and duration (1 to 24 hours); when ethylene was removed this capability remained high for sometime (more than 24 hours). Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene in tomato fruit. These data indicate that the development of the capability to convert ACC to ethylene in preclimacteric tomato and cantaloupe fruits are sensitive to ethylene treatment and that when these fruits are exposed to exogenous ethylene, the increase in ethylene-forming enzyme precedes the increase in ACC synthase.  相似文献   

16.
17.
18.
Tomato (Lycopersicon esculentum Mill) plants of the nonripening mutant nor, the ripening-inhibited mutant rin, and the normal cultivar `Rutgers' were grown in nutrient solution supplemented with 3 grams per liter NaCl from the time of anthesis. In plants treated with NaCl, all the ripening parameters of the fruits of the nor mutant increased, but those of the rin mutant did not. The ripening of the fruits of the NaCl-treated nor plants was characterized by the development of a red color and taste, increased pectolytic activity, and increased evolution of CO2 and ethylene. These changes do not normally take place in nor under control conditions. The values of these ripening parameters in nor were lower than those of the normal Rutgers fruits. In addition, both in nor and rin and in the normal variety, exposure of the plants to NaCl shortened the developmental period of the fruit, decreased the fruit size, and increased the concentrations of total soluble solids, Na+, Cl, reducing sugars, and titratable acids in the fruit. The role of NaCl in overcoming the inability of nor to ripen is discussed.  相似文献   

19.
Fruits of tomato, Lycopersicon esculentum Mill. cv Liberty, ripen slowly and have a prolonged keeping quality. Ethylene production and the levels of polyamines in pericarp of cv Liberty, Pik Red, and Rutgers were measured in relation to fruit development. Depending on the stage of fruit development, Liberty produced between 16 and 38% of the ethylene produced by Pik Red and Rutgers. The polyamines putrescine, spermidine, and spermine were present in all cultivars. Cadaverine was detected only in Rutgers. Levels of putrescine and spermidine declined between the immature and mature green stages of development and prior to the onset of climacteric ethylene production. In Pik Red and Rutgers, the decline persisted, whereas in Liberty, the putrescine level increased during ripening. Ripe pericarp of Liberty contained about three and six times more free (unconjugated) polyamines than Pik Red and Rutgers, respectively. No pronounced changes in spermidine or cadaverine occurred during ripening. The increase in the free polyamine level in ripe pericarp of Liberty may account for the reduction of climacteric ethylene production, and prolonged storage life.  相似文献   

20.
Fruits of tomato (Lycopersicon esculentum Mill.) cv. Rutgers and of a nearly isogenic stock containing the ripening inhibitor gene rin harvested at green (66% mature) and ripe (107% mature) stages were studied for the subcellular distribution of isoenzymes using isoelectric focusing. The enzymes studied were peroxidases, esterases, phosphatases, phosphorylase, malate dehydrogenases, and IAA oxidases. During ripening of normal fruit the activities in the supernatant fraction of all of these enzymes, except malate dehydrogenase, decreased. In the particulate fractions some enzymes decreased while others increased in activity. The rin gene inhibited only some of the changes which occurred during ripening of normal fruit. It is postulated that changes in the degree to which enzymes are bound to membranes comprise one of the mechanisms by which the activities of enzymes are controlled in tomato pericarp, and that these membranes remain intact during ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号