首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Ethylene at 10 and 100 μl/litre stimulated germ-tube elongation of Botrytis cinerea spores incubated within normal and non-ripening nor tomato fruits, but had little influence on the total percent of germination. Values of germ-tube length within the mature-green normal fruits and the mature-green or mature nor fruits were similar to those recorded within the normal mature fruits when held in air. Exposure of the normal and the mutant fruits to 100 μl/litre ethylene immediately after inoculation with B. cinerea insignificantly increased lesion development, but resulted in increased sporulation. When tomato fruits were exposed to ethylene for 3 days before inoculation a marked stimulatory effect on rot development was exhibited on the mature-green normal fruits but not on the nor mutant fruits. The results indicate that exogenous ethylene may directly stimulate germ tube growth of B. cinerea in both normal and mutant fruit, but that it may affect subsequent fungal growth indirectly, via stimulation of the ripening process, only in preclimacteric normal tomato fruit.  相似文献   

2.
Resistance of rin and nor tomato mutants to postharvest Rhizopus infection   总被引:1,自引:0,他引:1  
Fruits of the two non-ripening mutants of tomato, rin and especially nor, were markedly more resistant to Rhizopus stolonifer infection than the normal Rutgers fruit. Following artificial inoculations by contact with a diseased normal tomato covered with mycelium and sporangia, no infection of unwounded nor fruit occurred at its mature-green stage. At the mature stage the resistance of nor mutant fruit was manifested by a prolongation of the incubation period of the disease as well as by a markedly reduced incidence of rotted fruits. Chilling injury of fruit, prior to spore inoculation, was found to be a good means for indicating the relative resistance of the mutants as compared with the normal tomato. The relationship between the resistance of the mutant tomatoes to Rhizopus infection and their response to induced peel damage as a result of the contact or the chilling procedure, led to the assumption that fruit resistance is associated with the inability of the fungus to penetrate the periderm, rather than with fungal development within the fruit.  相似文献   

3.
Scions of the non-ripening rin and nor tomato strains (Lycopersicum esculentum Mill.) were grafted on normal understock plants (cv. Rutgers) in an effort to study the influence of roots and vegetative tissue on the ripening behavior of the tomato fruit. Receiprocal grafts of ‘Rutgers’ scions on rin and nor understocks as well as grafted and ungrafted controls were also established. No alteration in the ethylene, and CO2 evolution and color development of either mutant fruits on normal understock or of normal fruits on mutant understock occurred. We suggest that the inability of rin and nor mutant fruits to ripen normally stems either from the presence in mutant fruit of a non-translocatable ripening inhibitor, or from the absence of a non-translocatable ripening factor.  相似文献   

4.
Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant.  相似文献   

5.
Tomato (Lycopersicon esculentum Mill.) fruit ripening involves multiple metabolic changes resulting in softening and pigmentation. We investigated the mechanics and morphology of the enzymatically isolated cuticular membrane (CM) of cv. Ailsa Craig wild-type (wt) and nonripening mutant (nor) at three developmental stages. Cuticle thickness and degree of cutinization increased significantly from immature to fully ripe fruits for both wt and nor without differences between them. Mechanical characterization was carried out on dry and fully hydrated samples in uni-axial tension to determine their modulus of elasticity, stress, and strain at failure. Corresponding stress-strain diagrams were biphasic and showed yield for virtually all dry CM samples, while that of hydrated CM displayed considerable differences between wt and nor fruits. Concerning the mechanical properties, the CM of wt fruits was characterized by increasing stiffness and strength during fruit growth and maturation in both dry and hydrated states, whereas the CM of nor fruits was significantly less stiff and weaker at full maturity. Hydration generally caused lower moduli of elasticity and strength, while breaking strain was significantly affected only for the CM of ripe nor fruits. This plasticizing effect of water increased towards full maturity for both wt and nor, and may be related to fiber content in the CM matrix and hydration state of the cuticle. Comparative analysis of two additional wild-type tomato cultivars supported the ripening-related stiffening of the CM of Ailsa Craig wt and the altered mechanical properties of the nor mutant, as well as the plasticizing effect of water.  相似文献   

6.
Inoculations with both Botrytis cinerea and Geotrichum candidum stimulated ethylene evolution in the pre-climacteric normal tomato fruit and the non-ripening nor mutant which did not show any rise in ethylene when uninfected. In the post-climacteric normal fruits, new peaks in ethylene production were formed. The rise in ethylene evolution in all types of infected fruits has already been detected during the incubation period of the disease. Ethylene peaks were detected earlier and were higher in fruits infected with B. cinerea than with G. candidum, coinciding with the faster rate of growth of the former. Mechanical wounding also stimulated ethylene synthesis by the non-ripening fruits, production being directly proportional to wound dimension. Considerably higher rates of ethylene were recorded for infected fruits than for mechanically-injured fruits in which wound dimensions were similar to those of lesion development. Applying aminoxyacetic acid at the site of inoculation inhibited ethylene production by 55–60 % in the normal fruits and by about 80 % in the nor mutant fruits. A similar pathway of ethylene synthesis was suggested for normally ripening tomato fruit and non-ripening infected tissues.  相似文献   

7.
Flowers of a normal tomato cultivar and of the two non-ripening mutants rin and nor, were sprayed with a Botrytis cinerea spore suspension. Stem-end infection developed in 84–100% of the harvested fruits of these sprayed flowers when held in high r.h. In both nor and rin fruits, rot development remained restricted to the stem-end area and fruit shoulders, whereas in the normal fruit decay spread rapidly from the stem-end over the entire fruit. Spraying the flowers with iprodione prior to spore inoculation resulted in decreased incidence of decay and suppressed hyphal growth and sporulation in all types of fruits. The results indicate that floral organs serve as a pathway for B. cinerea stem-end initiation in both the normal and the mutant fruit and suggest that this mode of penetration is not related to the marked resistance to infection attributed to the mutant fruits.  相似文献   

8.
It has been reported that PG is a key enzyme related to the tomato fruit ripening and that the application of calcium can dramatically decrease the PG activity and delay the ripening of fruits. In this paper the effects of calcium treament at various ripening stages on the transformation of absorbed calcium, PG activity and PG synthesis in tomato fruits were studicd. According to the analysis of calcium by atomic absorption spectroscopy, it was shown that the soluble and total calcium contents in pericarp of fruits treated with calcium at mature-green stage were increased significantly, and that more soluble calcium was transformed into bound calcium. Both the absorption and transformation of calcium decreased in fruits treated with calcium at later stage of ripening. The inhibition of calcium on PG activity was most effective by treatment at mature-green stage, but less effective at later stage of ripening. One reason for the decrease of calcium inhibition was probably due to the decline of calcium absorption as fruit ripening. The polyacrylamide gel electrophoresis of PG showed that PG with a molecular weight of 46.7 kD was absent in mature-green fruits, and PG synthesis occurred only at the later stage of ripening. It seems that the earlier the treatment was done the more effective of the calcium inhibition of PG synthesis. Based on the above results, it was concluded that the PG plays a major role in ripening and senescence of tomato fruits, and both PG synthesis and its activity were inhibited by calcium. In order to delay the ripening and senescence of tomato fruits, the treatment with calcium should be done at mature-green stage.  相似文献   

9.
钙对不同成熟期番茄果实的PG活性及其合成的影响   总被引:11,自引:0,他引:11  
本文研究了钙处理不同成熟期番茄果实对果壁组织中钙含量与转化、多聚半乳糖醛酸酶(PG)活性与 PG 合成的影响。结果表明,钙处理绿熟期的番茄果实可使总钙和可溶性钙含量明显增加,并较多转化为结合钙;后期处理,进入和转化的钙都减少。同样,钙处理愈早,对果实 PG 活性的抑制愈强,绿熟期处理可完全抑制 PG 活性。凝胶电泳结合钌红染色,证明绿熟期果实无 PG,PG 是在果实成熟过程中新合成的。钙处理愈早,对 PG 合成的抑制愈强,绿熟期钙处理可完全抑制 PG 合成。  相似文献   

10.
Cell wall enzymes at different stages of fruit development were compared between the normal Rutgers and the isogenic nonripening rin tomato. In Rutgers, a detectable increase in polygalacturonase (PG) activity was observed 6 days prior to the respiratory climacteric (43 days postanthesis). The maximum increase in PG activity occurred after C2H2 and CO2 production reached their peak. However, in the rin tomato, no change in PG activity was noted up to 100 days postanthesis. Cellulase activity increased in Rutgers fruits prior to the respiratory climacteric and continued to increase thereafter. Similar changes in cellulase activity were also observed in the nonclimacteric rin fruits. Short term ethylene treatment (2 days) of 36-day-old rin fruits increased cellulase activity, but had no effect on PG activity. Detectable changes in other parameters of ripening, such as chlorophyll loss and softening, also occurred prior to the respiratory climacteric. These results suggest that the failure of rin fruits to ripen is related to their low PG activity during maturity as compared with normal fruits.  相似文献   

11.
12.
Recent studies suggest that fruit cuticle is an important contributing factor to tomato (Solanum lycopersicum) fruit shelf life and storability. Moreover, it has been hypothesized that variation in fruit cuticle composition may underlie differences in traits such as fruit resistance to desiccation and microbial infection. To gain a better understanding of cuticle lipid composition diversity during fruit ontogeny and to assess if there are common features that correlate with ripening, we examined developmental changes in fruit cuticle wax and cutin monomer composition of delayed‐ripening tomato fruit mutants, ripening inhibitor (rin) and non‐ripening (nor) and delayed‐ripening landrace Alcobaça. Previous reports show that fruit ripening processes such as climacteric ethylene production, cell wall degradation and color change are significantly delayed, or do not occur, in these lines. In the study presented here, however, we show that fruits from rin, nor and Alcobaça have cuticle lipid compositions that differ significantly from normal fruits of Ailsa Craig (AC) even at very early stages in fruit development, with continuing impacts throughout ripening. Moreover, rin, nor and the Alcobaça lines show quite different wax profiles from AC and each other throughout fruit development. Although cutin monomer composition differed much less than wax composition among the genotypes, all delayed‐ripening lines possessed higher relative amounts of C18 monomers than AC. Together, these results reveal new genetic associations between cuticle and fruit development processes and define valuable genetic resources to further explore the importance of cuticle in fruit shelf life.  相似文献   

13.
B. cinerea and C. atramentarium rotted wound-inoculated green tomato fruits and wounded or intact ripe fruits while G. cingulata developed rots only in ripe fruits. Pectic en-zymes were extracted from the fruit tissue rotted by B. cinerea and C. atramentarium but no pectic enzymes attributable to the fungus were detected in ripe fruits rotted by G. cingulata. G. cingulata produced endo-PG and endo-PL in vitro, C. atramentarium produced endo-PL in vitro and in vivo and B. cinerea produced exo-PG in vitro and in green fruits but endo-PG and endo-PL in ripe fruits. Well ripened tomato fruits contained high levels of endogenous PG. All three fungi produced proteolytic enzymes in vitro and in vivo. Proteases produced by G. cingulata and C. atramentarium had optimum activity at pH 9 to 10 and were not trypsin-like or chymotrypsin-like in nature. Protease produced by B. cinerea had optimum activity at pH 7 and showed both trypsin and chymotrypsin-like activity. Proteins extracted from the cell walls of tomato fruits inhibited both the endo-PG and endo-PL produced by G. cingulata and the endo-PL produced by B. cinerea but did not in-hibit the activity of PGs produced by B. cinerea, the endo-PL produced by C. atramentarium or the endogenous PG from tomato fruits. The cell wall proteins also contained trypsin and chymotrypsin inhibitor activity which inhibited 70 % of the activity of the protease produced by B. cinerea, but had little effect on the proteases produced by G. cingulata, C. atramentarium or the tomato endogenous protease. Enzymes produced in vitro by G. cingulata macerated green tomato tissue more slowly than enzymes produced in vitro by C. atramentarium and B. cinerea and the rate of mation was further reduced in the presence of added cell wall proteins. Excess inhibitor of the little effect on the rate of maceration by the enzymes produced by C. atramentarium of the cinerea.  相似文献   

14.
It has been reported that PG is a key enzyme related to the tomato fruit ripening. In this study tomato fruits were harvested at the mature-green stage and stored at room temperature. The cell ultrastructure of pericarp tissue was observed at different ripening stages, and the effects of treatments with ethylene and calcium on PG activity and fruit ripening were examined. The object of this study is to elucidate the role of PG in regulation of tomato fruit ripening by ethylene and calcium. PG activity, was undetectable at mature-green stage, but it rose rapidly as fruif ripening. The rise in PG activity was coincided with the dechnmg of fruit firmness during ripening of tomato fruits. The observation of cell ultrastructure showed that the most of grana in chloroplast were lost and the mitochondrial cristae decreased as fruit ripening. Striking changes of cell wall structure was most noted, beginning with dissolution of the middle lamella and eventual disruption of primary cell wall. A similar pattern of changes of cell wall and chloroplast have been observed in pericarp tissue treated with PG extract. In fruits treated with calcium and other divalent metal ions atmature-green stage, the lycopene content and PG activity decreased dramatically. Ethylene application enhanced the formation of lycopene and PG activity. The inhibition of Ca2+ on PG ac ivity was removed by ethylene. Based on the above results, it was demonstrated that PG played a major role in ripening of tomato fruits, and suggested that the regulation of fruit ripening by ethylene and Ca2+ was all mediated by PG. PG induced the hydrolysis of cell wall and released the other hydrolytic enzymes, then effected the ripening processes follow up.  相似文献   

15.
Alcobaca is commonly regarded as an abnormally ripening mutant of the tomato (Lycopersicon esculentum Mill.). Alcobaca fruits were found to be similar to cv. Rutgers fruits in the following characteristics: time between full anthesis and the onset of ripening, response to ethephon, flavor, pH and concentrations of titratable acids, total soluble solids and reducing sugars. The pattern of CO2 and ethylene climacteric are similar in the two plant types, but the peak levels were lower and occurred later in alcobaca than in ‘Rutgers’. The mutant fruits differed from fruits of normal varieties in their greatly prolonged shelf life, their relatively low activity of polygalacturonase (PG) and polymethylgalacturonase (PMG), and their low level of endogenous ethylene. Fruits of the mutant harvested before the onset of ripening failed to reach normal pigmentation and remained yellow. Fruits harvested at the onset of ripening reached an orange color, while fruits ripened while attached to the plant reached almost normal pigmentation. These results suggest that alcobaca is a slow ripening mutant and does not belong to the category of non-ripening mutants.  相似文献   

16.
Tomato (Lycopersicon esculentum Mill) plants of the nonripening mutant nor, the ripening-inhibited mutant rin, and the normal cultivar `Rutgers' were grown in nutrient solution supplemented with 3 grams per liter NaCl from the time of anthesis. In plants treated with NaCl, all the ripening parameters of the fruits of the nor mutant increased, but those of the rin mutant did not. The ripening of the fruits of the NaCl-treated nor plants was characterized by the development of a red color and taste, increased pectolytic activity, and increased evolution of CO2 and ethylene. These changes do not normally take place in nor under control conditions. The values of these ripening parameters in nor were lower than those of the normal Rutgers fruits. In addition, both in nor and rin and in the normal variety, exposure of the plants to NaCl shortened the developmental period of the fruit, decreased the fruit size, and increased the concentrations of total soluble solids, Na+, Cl, reducing sugars, and titratable acids in the fruit. The role of NaCl in overcoming the inability of nor to ripen is discussed.  相似文献   

17.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

18.
When mature green tomato fruits are stored at 22?C for 30 days,they ripen normally and soften, but if they are kept at 33?Cfor 15 days (heat treatment), then stored at 22?C they do notsoften. The effect of heat treatment on the development of polygalacturonase(PG, EC 3.2.1.15 [EC] ) activities in tomato fruits during storagetherefore was studied. When mature green tomato fruits werestored at 22?C, PG activity, which had not been detectable inthe fruits, appeared as the color changed and increased dramaticallythereafter. PG activity, however, did not appear during heattreatment. When heat-treated fruits were transferred to 22?C,PG activity appeared after a 6-day lag period and increasedduring the next 30 days at 22?C to about 15% of the value detectedin ripe tomato fruits. The PG in ripe tomato fruits was composed of two isoenzymesthat had different mol wts. A high molecular form (PG-1, molwt 100K) appeared during the early stage of ripening and a lowmolecular form (PG-2, mol wt 44K) a little later. PG-2 increasedvigorously during ripening and eventually accounted for mostof the enzyme activity in the ripe fruits. Only a single isoenzyme(Y-PG, mol wt 100K), however, was detected in heat-treated tomatofruits stored at 22?C for 30 days. PG-1 and Y-PG gave the samemol wt on Sephacryl S-200 gel nitration, but could be separatedby Toyopearl HW-55 F gel filtration. (Received October 31, 1983; Accepted February 20, 1984)  相似文献   

19.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

20.
The soft flesh and deciduous fruit of pepper (Capsicum spp.) originated from the wild C. frutescens BG 2816 accession is a complete dominant trait controlled by the S gene. We constructed an F2 population from a cross of BG 2816 (SS) and the bell-type C. annuum cultivar Maor (ss) and determined that S cosegregated with the tomato fruit-specific endo-polygalacturonase (PG) gene. The soft flesh and deciduous fruit phenotypes were observed together in all F2 individuals, indicating a pleiotropic effect of PG on the two traits. We mapped S to pepper chromosome 10 in the region corresponding to that in which PG was previously mapped in tomato. Northern, RT-PCR and western analyses and enzyme activity assays, collectively, indicated that PG is not detected in green, breaker or red fruits of Maor, nor in green fruits of BG 2816. Accumulation of PG mRNA and protein was detected in the fruits of BG 2816, and it increased during ripening from breaker to red stages. The sequence analysis of partial PG cDNA isolated from BG 2816 revealed high homology (87% identity) with the tomato PG. The resemblance of the soft flesh and deciduous fruit phenotypes to PG-associated phenotypes in other fruit crops, the complete linkage between Sand PG, and the greater expression of PG in the fruits of BG 2816 than in those of Maor, all strongly indicate that PG is a candidate gene for S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号