首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
2007年1月至12月,在长沙天际岭国家森林公园,使用LI-COR-6400-09连接到LI-6400便携式CO2/H2O分析系统,测定亚热带枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)林去除和添加凋落物(931.5 g · m-2a-1和1003.4 g · m-2a-1)的土壤呼吸速率以及5 cm土壤温、湿度,研究凋落物对2种森林生态系统中土壤呼吸速率的影响.结果表明:枫香和樟树林去除和添加凋落物的土壤呼吸速率季节变化显著,在季节动态上的趋势与5 cm土壤温度相似,均呈单峰曲线格局,全年去除凋落物土壤呼吸速率平均值分别为1.132 μmol CO2 · m-2s-1和1.933 μmol CO2 · m-2s-1,分别比对照处理1.397 μmol CO2 · m-2s-1和2.581 μmol CO2 · m-2s-1低18.62%和26.49%;添加凋落物土壤呼吸速率平均值分别为2.363 μmol CO2 · m-2s-1和3.267 μmol CO2 · m-2s-1,分别比对照处理高71.31%和39.18%.两种群落去除和添加凋落物土壤呼吸的季节变化均与5 cm土壤温度呈显著指数相关(P﹤0.001),与5 cm土壤湿度相关性不显著(P>0.05);土壤温度和湿度可以共同解释去除和添加凋落物后土壤呼吸变化的95.2%、93.7%和90.0%、92.8%.枫香和樟树群落去除和添加凋落物土壤呼吸温度敏感性Q10值分别为3.01、3.29和3.02、4.37,均比对照处理Q10值2.98和2.94高.这证明凋落物是影响森林CO2通量的一个重要因子.  相似文献   

2.
西双版纳山地三种土地利用方式的旱季土壤呼吸   总被引:1,自引:0,他引:1  
为了解西双版纳山地不同土地利用方式土壤呼吸旱季变化特征,本研究对古树茶园、台地茶园和次生林中土壤呼吸速率及其相关因素进行定位观测。结论如下:三种土地利用方式土壤呼吸速率日变化有显著的差异性(P<0.05);土壤呼吸速率日最高值大多出现在14∶00-16∶00;旱雨季交错期是土壤呼吸速率和土壤湿度变化最剧烈的阶段;土壤呼吸速率日均值表现为古树茶园(2.62μmol·m-2s-1)<台地茶园(2.73μmol·m-2s-1)<次生林(3.01μmol·m-2s-1);土壤湿度过高和过低都会阻碍土壤呼吸的进行;三种土地利用方式土壤呼吸速率均与土壤湿度(0~10cm)和空气日均温具有相关关系;降水会引起土壤呼吸较大的波动。  相似文献   

3.
垄沟覆膜栽培冬小麦田的土壤呼吸   总被引:3,自引:0,他引:3  
上官宇先  师日鹏  韩坤  王林权 《生态学报》2012,32(18):5729-5737
通过大田试验研究了垄沟覆膜栽培条件下冬小麦生长过程中土壤呼吸规律。结果表明,垄沟覆膜栽培条件下垄脊土壤呼吸速率高于平作栽培,而垄沟部土壤呼吸速率小于平作。冬小麦生育期内垄脊平均呼吸速率为(2.06±0.44)μmol CO2·m-2·s-1,垄沟为(0.75±0.11)μmol CO2·m-2·s-1,而平作栽培为(1.14±0.20)μmol CO2·m-2·s-1。土壤呼吸季节变化显著,越冬期低,夏季高。不同生育期土壤呼吸日变化规律不同,越冬前和返青期土壤呼吸与土壤温度成正相关,随着土壤温度的升高而增加,呈单峰曲线;拔节期后垄脊部的土壤呼吸日变化明显,呈现双峰曲线;而平作和垄沟的土壤呼吸速率平稳,没有明显峰值。5 cm土壤温度与土壤呼吸之间的相关性最好。在一定范围内(<24—31℃),土壤呼吸随着温度的增加而增加,温度过高反而会抑制土壤呼吸速率。土壤呼吸f(R)与5 cm土壤温度之间的关系可以用二次函数表示;5 cm土壤温度T和土壤含水量W的交互效应可用函数:f(R)=a(bT2+cT)(1+dln(2W)/T)+e表示。垄沟覆膜栽培显著改变了冬小麦田的土壤呼吸作用。  相似文献   

4.
杉木人工林去除根系土壤呼吸的季节变化及影响因子   总被引:6,自引:0,他引:6  
2007年1月至2008年12月,在长沙天际岭国家森林公园内,采用挖壕法研究杉木人工林去除根系后土壤呼吸速率季节动态及其与5 cm土壤温、湿度的相关关系。结果表明:去除根系与对照5 cm土壤温度的差异性不显著(P=0.987),5 cm土壤湿度差异显著(P=0.035)。杉木林去除根系处理后土壤呼吸速率明显降低,2007至2008两年实验期间去除根系与对照处理变化范围分别为0.19-2.01μmol.m-2s-1和0.26-2.61μmo.lm-2s-1,年均土壤呼吸速率分别为0.90μmo.lm-2s-1和1.30μmol.m-2s-1。去除根系土壤呼吸速率降低幅度为9.4%-59.7%,平均降低了30.4%。去除根系和对照的土壤呼吸速率与5 cm土壤温度之间均呈显著指数相关,模拟方程分别为:y=0.120e0.094t(R2=0.882,P=0.000),y=0.291e0.069t(R2=0.858,P=0.000)。Q10值分别为2.56和2.01。  相似文献   

5.
万木林保护区毛竹林土壤呼吸特征及影响因素   总被引:6,自引:0,他引:6  
Wang C  Yang ZJ  Chen GS  Fan YX  Liu Q  Tian H 《应用生态学报》2011,22(5):1212-1218
2009年1-12月,利用Li-Cor 8100开路式土壤碳通量系统测定福建省万木林自然保护区毛竹林土壤呼吸速率,分析毛竹林土壤呼吸动态变化及其与凋落物量的关系.结果表明:毛竹林土壤呼吸月变化呈明显的双峰型曲线,峰值分别出现在6月(6.83 μmol·m-2·s-1)和9月(5.59μmol·m-2·s-1).土壤呼吸速率的季节变化较明显,最大值出现在夏季,最小值出现在冬季;土壤呼吸速率与土壤5 cm温度呈显著正相关关系(P<0.05),与土壤含水量无显著相关性(P>0.05);毛竹林凋落物量月变化呈单峰型曲线.毛竹林土壤呼吸速率与当月凋落物归还量呈显著正相关(P<0.05).土壤温度和凋落物量的双因素模型可以解释土壤呼吸速率变化的93.2%.  相似文献   

6.
模拟酸雨胁迫对马尾松和杉木幼苗土壤呼吸的影响   总被引:5,自引:0,他引:5  
利用LI-8100测定模拟酸雨不同处理下(pH2.5、4.0和5.6)盆栽马尾松(Pinus Massoniana)和杉木幼苗(Cunninghamia lanceolata)的土壤呼吸速率及土壤温度、含水量,研究酸雨对其土壤呼吸的影响.结果表明:模拟酸雨喷淋下马尾松和杉木土壤pH值呈现下降的趋势且下降幅度同酸雨酸度呈现正相关性;马尾松和杉木各个处理下土壤呼吸速率季节变化显著,且同地下10cm土壤温度季节变化趋势一致,pH2.5处理下的土壤呼吸速率平均值分别为1.79μmol · m-2 · s-1和1.12μmol · m-2 · s-1,比对照组(pH5.6)土壤呼吸速率平均值1.57μmol · m-2 · s-1和1.54μmol · m-2 · s-1分别高14%和低39%;马尾松和杉木各个处理下土壤呼吸速率同10cm土壤温度之间均呈现显著的指数关系(P<0.001),与5cm土壤含水量之间相关性不明确;在P=0.05水平上进行多元回归分析,可以得到土壤呼吸速率同土壤温度和含水量的综合拟合方程,和单因素(温度、含水量)拟合相比能够更好地解释土壤呼吸的变化情况;马尾松和杉木在pH2.5和4.0处理下的土壤呼吸温度系数Q10值分别为1.36、2.01和1.51、2 25,同对照组1.14和1.58相比,均有明显差异,且两者Q10值的变化呈先增大后减小的趋势.这证明酸雨是影响马尾松和杉木土壤CO2通量的一个重要因素.  相似文献   

7.
湖南会同林区毛竹林地的土壤呼吸   总被引:5,自引:0,他引:5  
采用CID-301PS光合分析仪(配带土壤呼吸室),对湖南会同林区毛竹林地土壤呼吸进行测定,结果表明,毛竹林地土壤总呼吸速率、异养呼吸速率、自养呼吸速率及凋落物呼吸速率的年平均值分别为2.13、1.44、0.69μmolCO2·m-2·s-1和0.31μmolCO2·m-2·s-1,并呈现明显的季节变化规律和日变化规律,季节变化曲线呈单峰型,表现为1~7月份随着气温、地温的升高呈上升的趋势,在8月达年呼吸速率的最大值,分别达4.95、3.01、1.94μmolCO2·m-2·s-1和0.80 μmolCO2·m-2·s-1,此后随温度的降低而呈逐渐递减的趋势,直到翌年的1月份或2月份,分别为0.76、0.70、 0.06μmolCO2·m-2·s-1 和 0.05μmolCO2·m-2·s-1.日变化曲线图表现为单峰形态,一般也是随着温度的升高而加大,随着温度的降低而减小.6:00~14:00,随着土壤温度的升高而增加,一般在16:00~18:00出现最高峰,此后,一直递减,直到次日4:00~8:00.由此计算出毛竹林地土壤年释放CO2量为33.94 t·hm-2·a-1,其中,林地异养呼吸、自养呼吸和凋落物呼吸分别占总呼吸的59.5%、28.3%和12.2%.  相似文献   

8.
东北温带次生林与落叶松人工林的土壤呼吸   总被引:6,自引:1,他引:5  
2006年5—10月,使用Li-6400-09土壤呼吸系统测定了黑龙江省帽儿山地区温带次生林转化为落叶松人工林后土壤呼吸速率(Rs)的变化.结果表明:次生林与落叶松人工林土壤呼吸速率的日变化均呈单峰型曲线,与地温的日变化趋势相似.测定期间内,次生林和落叶松人工林Rs的变化范围分别为0.43~7.26μmol CO2.m-2.s-1和0.63~4.70μmol CO2.m-2.s-1,最大值出现在7—8月,最小值出现在10月.5—8月,次生林的Rs明显高于落叶松人工林.次生林和落叶松人工林枯落物层呼吸速率的季节变化范围分别为-0.65~1.26μmol CO2.m-2.s-1和-0.43~0.47μmol CO2.m-2.s-1.两林分中的Rs与土壤温度均呈明显的指数相关,且与5 cm深地温相关最紧密.用5 cm地温估算的次生林和落叶松人工林Q10分别为3.61和3.07.次生林的Rs与10~20 cm土壤含水率相关显著,而落叶松人工林的Rs与土壤含水率无明显相关.  相似文献   

9.
不同土地利用对土壤有机碳储量及土壤呼吸的影响   总被引:2,自引:0,他引:2  
赵竑绯  赵阳  徐小牛 《生态学杂志》2012,31(7):1738-1744
为了探讨土地利用方式对土壤碳储及土壤呼吸的影响,对安徽沿淮洼地杞柳纯林、杞柳-杨树混交林及杨树纯林3种不同土地利用方式下土壤有机碳储量及土壤呼吸特点进行了比较。结果表明:杞柳纯林、杞柳-杨树混交林、杨树纯林0~30cm土壤有机碳含量分别为6.80、8.50和7.71g·kg-1,土壤有机碳密度分别为2.88、3.26和2.95kg·m-2,土壤有机碳含量和土壤碳密度随土层深度的增加而降低。不同土地利用类型土壤呼吸年平均值分别为1.68μmol·m-2·s-1(杞柳纯林)、2.33μmol·m-2·s-1(杞柳-杨树混交林)、1.61μmol·m-2·s-1(杨树纯林),土壤呼吸日均值最高出现在夏季(6.64μmol·m-2·s-1),最低为冬季(0.13μmol·m-2·s-1)。相关分析表明,土壤呼吸速率与地表气温之间呈显著的指数关系,杞柳纯林、杞柳-杨树混交林、杨树纯林的相关系数R2分别为0.71、0.62、0.54。杞柳-杨树混交林较杞柳纯林有利于土壤有机碳的固定,杞柳纯林土壤有机碳储量偏低,与其粗放经营有关。在今后的栽植管理中,应采取合理的耕作施肥措施,在提高土壤肥力的同时增强土壤的碳固定。  相似文献   

10.
模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响   总被引:9,自引:3,他引:6  
Li RH  Tu LH  Hu TX  Zhang J  Lu Y  Liu WT  Luo SH  Xiang YB 《应用生态学报》2010,21(7):1649-1655
2007年12月至2008年11月,在华西雨屏区采用0(对照)、50、150、300kg.hm-2.a-1施氮处理和红外CO2分析法,研究了模拟N沉降对慈竹林土壤呼吸特征的影响.结果表明:慈竹林土壤呼吸速率年内季节变化呈明显的单峰型曲线,7月末最高,为(3.36±0.20)μmol.m-2.s-1,2月末最低,为(0.33±0.07)μmol.m-2.s-1.土壤呼吸速率与土壤温度之间呈极显著指数相关(P0.001),10cm深的土壤温度解释了土壤呼吸速率季节变化的91.6%;而土壤含水量与土壤呼吸之间相关性不显著(R2=0.0758).2008年6—11月根呼吸对土壤总呼吸的贡献率在46%~59%.50、150和300kg.hm-2.a-1施氮处理的年CO2释放量分别比对照低23.6%、46.7%和50.5%.0、50、150和300kg.hm-2.a-1施氮处理的土壤呼吸速率Q10值分别为3.72、3.51、2.95和2.71.  相似文献   

11.
利用红外辐射增温装置模拟短期持续增温和降水增加交互作用对内蒙古荒漠草原土壤呼吸作用的影响, 结果表明: 土壤含水量对月土壤呼吸的影响显著大于土壤温度增加的影响, 生长旺季的月土壤呼吸显著大于生长末季; 土壤温度和水分增加都显著影响日土壤呼吸, 但二者的交互作用对土壤呼吸无显著影响。荒漠草原7‒8月平均土壤呼吸速率为1.35 μmol CO2·m -2·s -1, 7月份为2.08 μmol CO2·m -2·s -1, 8月份为0.63 μmol CO2·m -2·s -1。土壤呼吸与地下各层根系生物量呈幂函数关系, 0‒10 cm土层的根系生物量对土壤呼吸的解释率(79.2%)明显高于10‒20 cm土层的解释率(31.6%)。0-10 cm土层的根系生物量是根系生物量的主体, 根系生物量对土壤呼吸的影响具有层次性。在未来全球变暖和降水格局变化的情景下, 荒漠草原土壤水分含量是影响生物量的主导环境因子, 而根系生物量的差异是造成土壤呼吸异质性的主要生物因素, 土壤含水量可通过影响根系生物量控制土壤呼吸的异质性。  相似文献   

12.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

13.
Global warming and changes in rainfall amount and distribution may affect soil respiration as a major carbon flux between the biosphere and the atmosphere. The objectives of this study were to investigate the site to site and interannual variation in soil respiration of six temperate forest sites. Soil respiration was measured using closed chambers over 2 years under mature beech, spruce and pine stands at both Solling and Unterlüß, Germany, which have distinct climates and soils. Cumulative annual CO2 fluxes varied from 4.9 to 5.4 Mg C ha?1 yr?1 at Solling with silty soils and from 4.0 to 5.9 Mg C ha?1 yr?1 at Unterlüß with sandy soils. With one exception soil respiration rates were not significantly different among the six forest sites (site to site variation) and between the years within the same forest site (interannual variation). Only the respiration rate in the spruce stand at Unterlüß was significant lower than the beech stand at Unterlüß in both years. Soil respiration rates of the sandy sites at Unterlüß were limited by soil moisture during the rather dry and warm summer 1999 while soil respiration at the silty Solling site tended to increase. We found a threshold of ?80 kPa at 10 cm depth below which soil respiration decreased with increasing drought. Subsequent wetting of sandy soils revealed high CO2 effluxes in the stands at Unterlüß. However, dry periods were infrequent, and our results suggest that temporal variation in soil moisture generally had little effect on annual soil respiration rates. Soil temperature at 5 cm and 10 cm depth explained 83% of the temporal variation in soil respiration using the Arrhenius function. The correlations were weaker using temperature at 0 cm (r2 = 0.63) and 2.5 cm depth (r2 = 0.81). Mean Q10 values for the range from 5 to 15 °C increased asymptotically with soil depth from 1.87 at 0 cm to 3.46 at 10 cm depth, indicating a large uncertainty in the prediction of the temperature dependency of soil respiration. Comparing the fitted Arrhenius curves for same tree species from Solling and Unterlüß revealed higher soil respiration rates for the stands at Solling than in the respective stands at Unterlüß at the same temperature. A significant positive correlation across all sites between predicted soil respiration rates at 10 °C and total phosphorus content and C‐to‐N ratio of the upper mineral soil indicate a possible effect of nutrients on soil respiration.  相似文献   

14.
华北平原地区麦田土壤呼吸特征   总被引:3,自引:0,他引:3  
2008年4-6月利用LI-8100及LI-6400-09测定了华北平原典型冬小麦田土壤CO_2通量,并分析了麦田土壤呼吸变化规律及其影响机制.结果表明:土壤呼吸日变化呈明显的单峰曲线,最高值出现在12:30-14:30,最低值出现在5:00-6:30;在不同的天气条件下,土壤呼吸速率晴天最高,多云其次,阴天最小;观测期间冠层内各高度CO_2浓度与麦田土壤呼吸速率白天呈显著线性负相关,夜间正相关;土壤呼吸速率与5 cm地温的季节变化趋势基本一致,二者显著指数相关;在田间持水量范围内,土壤呼吸速率与土壤湿度正相关,当土壤相对湿度低于30%时,土壤呼吸受到抑制而通量降低;综合考虑土壤温度与湿度的双因素指数回归模型能较好地解释土壤呼吸的变化情况,土壤温度低于15 ℃时效果更好.
Abstract:
By using LI-8100 and LI-6400-09, the soil CO_2 flux of a winter wheat field in North China Plain was determined from April to June 2008, with its change patterns and affecting fac-tors analyzed. The soil respiration had a single-peak diurnal variation, with the maximum at 12: 30-14:30 and the minimum at 5:00-6:30, and the respiration rate was higher in sunny days than in cloudy or overcast days. There was a significant negative correlation between the CO_2 con-centrations at all canopy heights and the soil respiration rate at daytime, but a significant positive correlation at night. The soil respiration rate presented a seasonal variation similar to the soil tem-perature at 5 cm depth, and had a significant exponential relationship with the soil temperature. Significant correlation was also found between the soil respiration rate and soil humidity when the soil moisture content was within the range of field capacity. Soil humidity less than 30% would limit the soil respiration, inducing a decrease of soil CO_2 flux. A multiple exponential regression model of soil temperature and moisture could better explain the variation of soil respiration, espe-cially when the soil temperature was below 15 ℃.  相似文献   

15.
秦岭火地塘林区油松(Pinus tabulaeformis)林休眠期的土壤呼吸   总被引:3,自引:2,他引:1  
侯琳  雷瑞德  刘建军  尚廉斌 《生态学报》2008,28(9):4070-4077
林木休眠期林地土壤CO2释放是森林生态系统碳平衡关键组成部分之一.由于绝大多数森林生态系统林木休眠期土壤CO2释放过程测定困难,国内有关林木休眠期CO2释放,量化方面的研究开展较少.采用动态开路气室法对秦岭火地塘林区天然次生油松(Pinus tabulaeformis)林土壤呼吸的日变化进行了测定,分析了土壤呼吸速率(mgCO2m-2h-1)与土壤温度和体积含水率的关系,基于土壤日均呼吸速率和土壤日均温度指数方程与观测季的总天数,估算了林木休眠期林地土壤CO2释放量.结果表明:(1)研究区林地土壤呼吸速率存在较大的时、空变异.不同观测部位土壤呼吸速率的峰值出现时间各异,呼吸作用较弱的时段也不一致.同一观测部位不同观测月中,土壤日均呼吸速率变异系数分别为48.38%,82.51%和81.88%;(2)当土温>8.5 ℃时,0~5 cm和5~10 cm土层,土壤日均温与土壤日均呼吸速率间存在极显著(p<0.001)的指数关系,Q10分别为1.297和1.323;(3)0~5 cm和5~10 cm土层,土壤体积含水率与土壤呼吸速率间关系复杂;(4) 林木休眠期研究区林地土壤CO2释放量变化于(977.37±88.43)~(997.19±80.73) gCm-2(p=0.005)间.  相似文献   

16.
Hou L  Lei R D  Liu J J  Shang L B 《农业工程》2008,28(9):4070-4077
Soil CO2 efflux in forest ecosystems during dormant season is one of the key components of the forest ecosystem carbon balance. Little work has been done to quantify soil CO2 efflux in most forests in China in special time because of difficulty in taking measurements. Soil respiration in a natural secondary Pinus tabulaeformis forest at Huoditang in the Qinling Mountains was measured from October to December in 2006 by means of open-path dynamic chamber technique. Relationships of soil respiration rate (Rs) with mean soil temperature (MST) and mean volumetric soil moisture content (MVSC) in different depths (0-5 cm and 5-10 cm) were examined in the current study. We found that (1) At the same observation site (upper-part, middle-part or under-part), there were tremendous temporal and spatial variations in Rs with variation coefficients of 48.38%, 82.51% and 81.88% in October, November and December, respectively; (2) There was a significant exponent relationship between diurnal mean soil respiration rate (Fc) and diurnal mean soil temperature (DMST) when DMST > 8.5°C for both soil depths (0-5 cm and 5-10 cm) examined. The temperature sensitivity of soil respiration, known as the Q10 value, was 1.297 and 1.323 in soil depths of 0-5 cm and 5-10 cm, respectively; (3) Relationship between Rs and MVSC was complex in soil depths of 0-5 cm and 5-10 cm; (4) Soil CO2 efflux from October to December in 2006 in the experimental area was (977.37 ± 88.43) to (997.19 ± 80.73) gCm−2 (p = 0.005).  相似文献   

17.
The main determinants of soil respiration were investigated in 11 forest types distributed along an altitudinal and thermal gradient in the southern Italian Alps (altitudinal range 1520 m, range in mean annual temperature 7.8°C). Soil respiration, soil carbon content and principal stand characteristics were measured with standardized methods. Soil CO2 fluxes were measured at each site every 15–20 days with a closed dynamic system (LI‐COR 6400) using soil collars from spring 2000 to spring 2002. At the same time, soil temperature at a depth of 10 cm and soil water content (m3 m?3) were measured at each collar. Soil samples were collected to a depth of 30 cm and stones, root content and bulk density were determined in order to obtain reliable estimates of carbon content per unit area (kg C m?2). Soil respiration and temperature data were fitted with a simple logistic model separately for each site, so that base respiration rates and mean annual soil respiration were estimated. Then the same regression model was applied to all sites simultaneously, with each model parameter being expressed as a linear function of site variables. The general model explained about 86% of the intersite variability of soil respiration. In particular, soil mean annual temperature explained the most of the variance of the model (0.41), followed by soil temperature interquartlile range (0.24), soil carbon content (0.16) and soil water content (0.05).  相似文献   

18.
沙坡头人工植被演替过程的土壤呼吸特征   总被引:3,自引:0,他引:3  
为探讨人工植被演替过程对土壤呼吸速率的影响,本文利用碱液吸收法同步测定了腾格里沙漠东南缘1956、1964、1981、1987、1989、2007年始植的人工植被区和2007年新铺设的草方格固沙区及流沙区的土壤呼吸速率变化,同时分析了土壤水分和温度对上述不同样地土壤呼吸的影响。结果表明:1) 总体而言,土壤呼吸速率随着人工植被演替时间的延长而逐渐增大。当土壤含水量较高时,不同始植年代人工植被区的土壤呼吸速率具有显著的差异(P<0.05);当土壤含水量较低时,不同始植年代植被区的土壤呼吸速率没有显著的差异(P>0.05)。2)土壤呼吸速率与土壤含水量呈正相关关系,且相关系数随着人工植被演替时间的延长而逐渐增大。3)利用土壤呼吸速率-土壤温度指数函数关系计算得到不同人工植被演替阶段土壤呼吸速率的Q10值均较低(平均值仅为1.02)。土壤温度对1987、1989年人工植被区内的土壤呼吸速率产生了显著影响(P<0.05),而对其他样地的土壤呼吸速率影响不显著 (P>0.05)。综合说明,人工植被的演替过程改变了土壤呼吸速率大小及其对土壤水分和温度的响应。  相似文献   

19.
黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响   总被引:8,自引:0,他引:8  
采用田间试验研究了黄土旱塬区不同覆盖措施下的冬小麦农田土壤呼吸日变化和季节变化特征.试验包括4个处理:作物生育期秸秆覆盖600 kg·hm-2(M600)、秸秆覆盖300 kg·hm-2(M300)、地膜覆盖(PM)和无覆盖处理(CK).结果表明:冬小麦农田土壤呼吸速率从播种至返青之前呈下降趋势,处理间没有显著差异;越冬后土壤呼吸速率迅速提高,至拔节期最高.与CK相比,3个覆盖处理在越冬至成熟期间均显著促进了土壤CO2的释放,其中PM与其他处理间的差异达到极显著水平.全生育期M600和M300处理土壤呼吸速率平均分别为1.47和1.52 μmol CO2·m-2·s-1,较CK(1.38 μmol CO2·m-2·s-1)分别提高了6.6%和10.2%;PM处理土壤呼吸速率平均为3.63 μmol CO2·m-2·s-1,较CK提高了163%.CK处理土壤呼吸日变化呈单峰曲线,峰值出现在12:00左右,秸秆覆盖后峰值时间推迟到14:00左右;PM处理土壤呼吸日变化特征在拔节期与对照相似,在成熟期则呈双峰曲线,峰值分别出现在12:00和16:00左右.土壤呼吸速率与土壤温度和土壤水分分别呈指数和抛物线式相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号