首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of exogenous spermidine (Spd) in alleviating fruit granulation in the grafted seedlings of a Citrus cultivar (Huangguogan) was investigated. Granulation resulted in increased electrical conductivity, cell membrane permeability, and total pectin, soluble pectin, cellulose, and lignin contents. However, it decreased the activities of superoxide dismutase, peroxidase, and catalase, as well as the (Spd + Spm):Put ratio. The application of exogenous Spd onto Huangguogan seedlings significantly increased proline and ascorbate contents, but decreased the H2O2 and O 2 levels, which suggested that exogenous Spd provided some protection from oxidative damage. In addition, exogenous Spd decreased cell membrane permeability and MDA content, and increased the (Spd + Spm):Put ratio. The activities of antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase, were increased in Spd-treated seedlings affected by fruit granulation, resulting in a decrease in oxidative stress levels. The protective effects of Spd were reflected by a decrease in superoxide levels through osmoregulation, increased proline and ascorbate contents, and increased antioxidant activities. Our observations reveal the importance of exogenous Spd in alleviating citrus fruit granulation.  相似文献   

2.
3.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

4.
To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H2O2) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.  相似文献   

5.
The main aim of the present study was to examine the role of selenium (Se) in ameliorating the toxic effect of cadmium (Cd) in mustard (Brassica juncea) plants. The plants exposed to elevated levels of Cd exhibited reduced biomass, pigment content, and relative water content (RWC). However, supplementation of Se restores the negative effect of Cd and increases biomass, pigment content, and RWC. Osmolyte (proline and glycine betaine) and sugar content were increased under Cd stress and further increase was observed with addition of Se. Cd decreased protein content and supplementation of Se increases it to appreciable levels. Cd also increased production of H2O2 and lipid peroxidation, electrolyte leakage, and the activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and glutathione reductase. Supplementation of Se decreased accumulation of H2O2 and lipid peroxidation, increased the activities of antioxidant enzymes to greater levels, and regulates Cd accumulation in roots and shoots. Ascorbic acid (AsA) and flavonoids decreased with elevated concentrations of Cd; however, tocopherol and total phenols were increased with the same concentrations of Cd. Se application maintains AsA and flavonoid content, and further increase in tocopherol and total phenols were observed with Se in the present study. Overall the results confirm that exogenous application of Se mitigates the negative effects of Cd stress in mustard plants through the regulation of osmoprotectants, antioxidant enzymes, and secondary metabolites.  相似文献   

6.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

7.
8.
9.
This study was designed to investigate the possible effects of 24-Epibrassinolide (BR), arbuscular mycorrhizal (AM) fungus, Glomus mosseae, singularly and collectively under salt stress in wheat (Triticum aestivum L.) plants. After foliar spraying of mycorrhizal and non-mycorrhizal plants by 5 µM epibrassinolide (24-Epi), they were treated with 0 and 150 mM NaCl for 2 weeks and then harvested. The results showed interactions of G. mosseae and 24-Epi could alleviate the adverse effects of salinity by improving relative water content (RWC) of leaves (62%), relative growth rate (40.74%), shoot fresh weights (39.83%) and shoot phosphorous content (63.93%), stimulating leaf enzymatic antioxidant activities including catalase (2.24 fold) and ascorbate peroxidase (2.18 fold) as well as malondialdehyde (36.17%) and H2O2 concentrations (49.74%) as compared to those of NaCl treatments. Moreover, mycorrhizal dependency of root dry weight (2%) and phosphorus concentration (0.4%) increased with AM infection and 24-Epi application under saline condition. Leaf RWC, also, negatively correlated with membrane electrolyte leakage. Furthermore, the greatest mitigating effects were observed in mycorrhizal plants subjected to NaCl and 24-Epi. This study indicated that 24-Epi application and AM fungi may synergistically mitigate harmful impacts of salinity in wheat plants.  相似文献   

10.
Cuttings of Populus cathayana Rehd, originating from three triploid and one diploid populations with the same parents but different gamete origins, were used to examine physiological responses to drought stress and rewatering by exposure to three progressive water regimes. Progressive drought stress significantly decreased the leaf relative water content (RWC), photosynthesis, and chlorophyll fluorescence parameters, and increased the relative electrolyte leakage, malondialdehyde (MDA), free proline (Pro), and antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, in the four populations evaluated. However, compared to the diploid population, triploid populations showed lower relative electrolyte leakage and MDA, higher RWC and Pro content, and more efficient photosynthesis and antioxidant systems under the same water regime. Our data indicated that triploid populations possessed more efficient protective mechanisms than that of diploid population with gradually increasing drought stress. Moreover, some triploid genotypes were less tolerant to water stress than that of diploids due to large intrapopulation overlap.  相似文献   

11.
Drought-stressed plants accumulate cyclitols such as myo-inositol, pinitol, quercitol in the cytosol. These solutes (compatible solutes) protect plants from stress effects. Synthetic myo-inositol was used in the investigation of drought stress tolerance in pepper plants. Hydrogen peroxide (H2O2), membrane damage, ascorbate peroxidase (AP), catalase (CAT), proline and calcium increased in plants under drought conditions. Water status, calcium level, glutathione reductase activities increased in myo-inositol treated Capsicum annuum L. (pepper) under drought stress. Exogenous myo-inositol significantly decreased H2O2, membrane damage and proline levels and AP (except for 5 µM) and CAT activity, compared with untreated plants. Myo-inositol can play a role as effective as proline in signal transduction and in regulating concentrations of reactive oxygen species within tolerable ranges and in maintaining cell turgor by binding water molecules. Myo-inositol may become a useful instrument to eliminate the negative effects of drought environments.  相似文献   

12.
Methyl jasmonate (MeJA) is an essential and promising plant growth regulation factor that can improve plant development and growth. Here, we explored the mechanism by which MeJA regulates the tolerance of black locust (Robinia pseudoacacia L.) to salt stress. In this study, diploid and tetraploid R. pseudoacacia were subjected to three treatments: 500 mM NaCl; 100 μM MeJA; and 500 mM NaCl and 100 μM MeJA, and the changes in plant growth, endogenous MeJA levels and the anti-oxidative metabolism of leaves were investigated. The results showed that salt stress significantly inhibited plant growth and induced the accumulation of Na+ and Cl? ions, malondialdehyde (MDA) content and reactive oxygen species. However, these adverse effects could be alleviated by applying MeJA, which was followed by a marked increase in the activities of antioxidant enzymes. In addition, some genes encoding several antioxidant enzymes were also up-regulated. Simultaneously, the endogenous MeJA content in MeJA-treated plants was lower than in salt-treated plants. It is noteworthy that tetraploids always possessed higher salt tolerance and obtained greater positive effects from MeJA than diploids. These results suggested that MeJA might play a protective role in defense responses, enabling diploid and tetraploid black locust, especially tetraploid, to better tolerate the adverse effects of salt stress.  相似文献   

13.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

14.
15.
16.
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.  相似文献   

17.
The lipophilic vitamin E, α-Tocopherol (α-Toc), has been considered as a potent cellular antioxidant naturally occurring in biological membranes. It plays a number of key metabolic roles in plants exposed to various stressful cues. A field experimental was conducted on mungbean [Vigna radiata (L.) Wilczek] under varying water-limited regimes and the plants were sprayed with four levels of α-Toc (0, 100, 200, and 300 mg L?1) at the vegetative stage of plant growth. The results showed that limited field irrigation regimes (desiccated conditions) caused a marked reduction in growth parameters (shoot and root fresh and dry weights; shoot and root lengths), photosynthetic pigments (chlorophyll a and b), total soluble proteins (TSP) and yield attributes (number of pods, seeds per plant, weight of ripened pods and 100-seeds weight), while, in contrast, water deficiency induced an increase in phenolics, proline, glycine betaine (GB), hydrogen peroxide (H2O2), malondialdehyde (MDA), reducing and non-reducing sugars, total free amino acids, endogenous tocopherol levels, and activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the foliar spray of α-Toc significantly improved shoot and root fresh and dry weights, shoot and root lengths, chlorophyll a and b contents, phenolics, proline, GB, reducing and non-reducing sugars, TSP, total free amino acids, endogenous tocopherol level, and activities of antioxidant enzymes (SOD, POD, and CAT), as well as yield parameters. On the other hand, it significantly decreased the MDA and H2O2 levels. Of all varying levels of α-Toc used, 100 mg L?1 was most effective in causing enhanced accumulation of ascorbic acid (AsA), MDA, and cellular tocopherols particularly in cv. Cyclone 7008, while proline and catalase in cv. Cyclone 8009. Of both cultivars, Cyclone 7008 was superior to the other cultivar in proline, TSP, SOD, and POD enzymes, but cv. Cyclone 8009 being superior in shoot fresh weights, root fresh weight, shoot and root lengths, chlorophyll a and b, phenolics, H2O2, AsA, MDA, CAT, number of pods, seeds, weight of ripened pods, and weight of 100 seeds under dry land conditions. Overall, exogenously applied tocopherol improved yield and myriad of key physio-biochemical attribute in mungbean.  相似文献   

18.
Role of antioxidant systems in wild plant adaptation to salt stress   总被引:1,自引:1,他引:0  
Wild plants differing in the strategies of adaptation to salinity were grown for six weeks in the phytotron and then subjected to salt stress (100 mM NaCl, 24 h). The activities of principal antioxidant enzymes and the accumulation of sodium ions and proline were studied. Independently of the level of constitutive salt tolerance, plants of all species tested accumulated sodium ions under salinity conditions but differed in their capability of stress-dependent proline accumulation and superoxide dismutase (SOD) and guaiacol-dependent peroxidase activities. Proline-accumulating species were found among both halophytes (Artemisia lerchiana and Thellungiella halophila) and glycophytes (Plantago major and Mycelis muralis). The high activities of ionically-bound and covalently bound peroxidases were characteristic of Th. halophila plants. High constitutive and stress-induced SOD activities were, as a rule, characteristic of glycophytes with the low constitutive proline level: Geum urbanum and Thalictrum aquilegifolium. Thus, a negative correlation was found between proline content and SOD activity in wild species tested; it was especially bright in the halophyte Th. halophila and glycophyte G. urbanum. An extremely high constitutive and stress-induced levels of proline and peroxidase activity in Th. halophila maybe compensate SOD low activity in this plant, and this contributed substantially into its salt resistance. Thus, monitoring of stress-dependent activities of some antioxidant enzymes and proline accumulation in wild plant species allowed a supposition of reciprocal interrelations between SOD activity and proline accumulation. It was also established that the high SOD activity is not obligatory trait of species salt tolerance. Moreover, plants with the high activity of peroxidase and active proline accumulation could acclimate to salts stress (100 mM NaCl, 24 h) independently of SOD activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号