首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthine dehydrogenase (EC1.1.1.204; XDH) plays an important role in purine catabolism that catalyzes the oxidative hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. Long attributed to its role in recycling and remobilization of nitrogen, recently, XDH is implicated in plant stress responses and acclimation, such research efforts, however, have thus far been restricted to Arabidopsis XDH-knockdown/knockout studies. This study, using an ectopic overexpression approach, is expected to provide novel findings. In this study, a XDH gene from Vitis vinifera, named VvXDH, was synthesized and overexpressed in Arabidopsis, the transgenic Arabidopsis showed enhanced salt tolerance. The VvXDH gene was investigated and the results demonstrated the explicit role of VvXDH in conferring salt stress by increasing allantoin accumulation and activating ABA signaling pathway, enhancing ROS scavenging in transgenic Arabidopsis. In addition, the water loss and chlorophyll content loss were reduced in transgenic plants; the transgenic plants showed higher proline level and lower MDA content than that of wild-type Arabidopsis, respectively. In conclusion, the VvXDH gene has the potential to be applied in increasing allantoin accumulation and enhancing the tolerance to abiotic stresses in Arabidopsis and other plants.  相似文献   

2.
3.
4.
5.
6.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

7.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

8.
9.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

10.
11.
Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants.  相似文献   

12.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

13.
14.
Histidine triad nucleotide-binding protein 1 (HINT1) is highly conserved in many species and plays important roles in various biological processes. However, little is known about the responses of HINT1 to abiotic stress in plants. Salt and drought stress are major limiting factors for plant growth and development, and their negative effects on crop productivity may threaten the world’s food supply. Previously, we identified a maize gene, Zm-HINT1, which encodes a 138-amino-acid protein containing conserved domains including the HIT motif, helical regions, and β-strands. Here, we demonstrate that overexpression of Zm-HINT1 in Arabidopsis confers salt and drought tolerance to plants. Zm-HINT1 significantly regulated Na+ and K+ accumulation in plants under salt stress. The improve tolerance characteristics of Arabidopsis plants that were overexpressing Zm-HINT1 led to increased survival rates after salt and drought treatments. Compared with control plants, those plants that overexpressed Zm-HINT1 showed increased proline content and superoxide dismutase activity, as well as lower malondialdehyde and hydrogen peroxide accumulation under salt and drought treatments. The expression patterns of stress-responsive genes in Arabidopsis plants that overexpressed Zm-HINT1 significantly differed from those in control lines. Taken together, these results suggest that Zm-HINT1 has potential applications in breeding and genetic engineering strategies that are designed to produce new crop varieties with improved salt and drought tolerance.  相似文献   

15.
16.
Stress responsive RNA helicases are involved in translation initiation sustain protein synthesis. In this study, a stress responsive DEAD box RNA helicase, AhRH47 from peanut cDNA library was identified and characterised during stress. In silico analysis of AhRH47 showed the nine conserved motifs characteristic of an RNA helicase. The phylogenetic and amino acid sequence alignment analyses revealed that AhRH47 is highly homologous to an important DEAD box RNA helicase (eIF4A), which is involved in translation initiation. AhRH47 is stress responsive, being highly expressed under salinity and moisture stress, which is induced to a lesser extent under PEG and ABA treatments. Constitutive overexpression of AhRH47 in Arabidopsis conferred enhanced tolerance to salinity and mannitol-induced stresses. In addition, the transgenic plants showed improved tolerance under moisture stress and exhibited improved recovery growth on stress alleviation. Overexpressing plants showed increased 14C-labelled amino acids incorporation in to protein especially under stress condition. The results suggest AhRH47 transgenic lines maintained higher protein synthesis under stress and thus improved adaptation to osmotic and desiccation stresses.  相似文献   

17.
18.
Abscisic acid (ABA) regulates various plant physiological processes, especially participates in the plant responses to harsh environments. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis pathway. Here, a TaNCED with an 1 887-bp open reading frame was cloned from wheat, which encodes a peptide of 628 amino acids. A chloroplast transit peptide sequence was found at the N-terminus of the TaNCED protein. Multiple sequence alignments indicate that the TaNCED protein shared high similarities with other NCEDs from different species. Real-time quantitative PCR analysis shows that expression of TaNCED was strongly up-regulated by treatments with ABA, polyethylene glycol, and drought stress, and it was down-regulated during germination of the wheat seeds. Ectopic overexpression of the TaNCED gene in Arabidopsis resulted in an increase of endogenous ABA and free proline content. A lower water loss rate and stomatal conductance of leaves were found in the transgenic plants in comparison with the wild type. Subsequently, the transgenic plants displayed an enhanced tolerance to drought stress but delayed seed germination. These data provide evidence that the TaNCED might play a primary role in regulation of ABA content during water stress and seed dormancy.  相似文献   

19.
20.

Key message

Molecular analysis of a zeta subfamily GST gene from T. hispida involved in ABA and methyl viologen tolerance in transgenic Arabidopsis and Tamarix.

Abstract

Glutathione S-transferase (GST) genes are important for the improvement of plant abiotic stress tolerance, and our previous study demonstrated that the ThGSTZ1 gene from Tamarix hispida improves plant salt and drought tolerance. To further understand the role of ThGSTZ1 in the response of plants to abscisic acid (ABA) and oxidative stress, three ThGSTZ1-overexpressing transgenic Arabidopsis thaliana lines were analyzed in the current study. The results showed that the transgenic lines exhibited higher biomass accumulation, higher activities of GST and other protective enzymes, and less reactive oxygen species (ROS) and cell damage than wild-type (WT) plants under ABA and methyl viologen (MV) stress. In addition, the analysis of a transgenic T. hispida line transiently expressing ThGSTZ1 confirmed these results. The activities of GST, glutathione peroxidase, and superoxide dismutase were markedly higher in the ThGSTZ1-overexpressing lines compared with the control lines under both ABA and MV treatments, and the transgenic lines also exhibited a lower degree of electrolyte leakage (EL) and a decreased H2O2 content. All these results suggested that ThGSTZ1 can also improve plant ABA and oxidation tolerance by regulating ROS metabolism and that ThGSTZ1 represents an excellent candidate gene for molecular breeding to increase plant stress tolerance.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号