首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methyl jasmonate regulated diploid and tetraploid black locust (<Emphasis Type="Italic">Robinia pseudoacacia</Emphasis> L.) tolerance to salt stress
Authors:Mingquan Jiang  Fuling Xu  Mu Peng  Fenglan Huang  Fanjuan Meng
Institution:1.College of Life Science,Northeast Forestry University,Harbin,People’s Republic of China;2.College of Life Science,Inner Mongolia University for the Nationlaities,Tongliao,People’s Republic of China
Abstract:Methyl jasmonate (MeJA) is an essential and promising plant growth regulation factor that can improve plant development and growth. Here, we explored the mechanism by which MeJA regulates the tolerance of black locust (Robinia pseudoacacia L.) to salt stress. In this study, diploid and tetraploid R. pseudoacacia were subjected to three treatments: 500 mM NaCl; 100 μM MeJA; and 500 mM NaCl and 100 μM MeJA, and the changes in plant growth, endogenous MeJA levels and the anti-oxidative metabolism of leaves were investigated. The results showed that salt stress significantly inhibited plant growth and induced the accumulation of Na+ and Cl? ions, malondialdehyde (MDA) content and reactive oxygen species. However, these adverse effects could be alleviated by applying MeJA, which was followed by a marked increase in the activities of antioxidant enzymes. In addition, some genes encoding several antioxidant enzymes were also up-regulated. Simultaneously, the endogenous MeJA content in MeJA-treated plants was lower than in salt-treated plants. It is noteworthy that tetraploids always possessed higher salt tolerance and obtained greater positive effects from MeJA than diploids. These results suggested that MeJA might play a protective role in defense responses, enabling diploid and tetraploid black locust, especially tetraploid, to better tolerate the adverse effects of salt stress.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号