首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An individual's choice of habitat should optimize amongst conflicting demands in a way that maximizes its fitness. Habitat selection by one species will often be influenced by presence and abundance of competitors that interact directly and indirectly with each other (such as through shared predators). The optimal habitat choice will thus depend on competition for resources by other species that can also modify predation risk. It may be possible to disentangle these two effects with careful analysis of density‐dependent habitat selection by a focal prey species. We tested this conjecture by calculating habitat isodars (graphs of density assuming ideal habitat selection) of chital deer living in two adjoining dry‐forest habitats in Gir National Park and Sanctuary, western India. The habitats differed only in presence (Sanctuary) and absence (National Park) of domestic prey (cattle and buffalo). Both species are preyed on by Asiatic lions. The habitat isodar revealed at low densities, that chital live in small groups and prefer habitat co‐occupied by livestock that reduce food resources, but also reduce predation risk. At higher densities, chital form larger groups and switch their preference toward risky habitat without livestock. The switch in chital habitat use is consistent with theories predicting that prey species should trade off safety in favor of food as population density increases.  相似文献   

2.
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world’s most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite’s (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.  相似文献   

3.
Almany GR 《Oecologia》2004,141(1):105-113
Greater structural complexity is often associated with greater abundance and diversity, perhaps because high complexity habitats reduce predation and competition. Using 16 spatially isolated live-coral reefs in the Bahamas, I examined how abundance of juvenile (recruit) and adult (non-recruit) fishes was affected by two factors: (1) structural habitat complexity and (2) the presence of predators and interference competitors. Manipulating the abundance of low and high complexity corals created two levels of habitat complexity, which was cross-factored with the presence or absence of resident predators (sea basses and moray eels) plus interference competitors (territorial damselfishes). Over 60 days, predators and competitors greatly reduced recruit abundance regardless of habitat complexity, but did not affect adult abundance. In contrast, increased habitat complexity had a strong positive effect on adult abundance and a weak positive effect on recruit abundance. Differential responses of recruits and adults may be related to the differential effects of habitat complexity on their primary predators. Sedentary recruits are likely most preyed upon by small resident predators that ambush prey, while larger adult fishes that forage widely and use reefs primarily for shelter are likely most preyed upon by large transient predators that chase prey. Increased habitat complexity may have inhibited foraging by transient predators but not resident predators. Results demonstrate the importance of habitat complexity to community dynamics, which is of concern given the accelerated degradation of habitats worldwide.  相似文献   

4.
Studies on the effects of within-patch scale structure of seagrass habitats on predator–prey fish interactions and abundance/habitat use patterns were reviewed. Most laboratory experiments have employed chase-and-attack predators, usually resulting in lower foraging efficiency in (denser) seagrass. However, a few laboratory procedures employed alternative foraging tactics, resulting in no differences in prey mortality rates. Field studies did not always result in lower prey mortality rates in seagrass habitats. Accordingly, it is premature to conclude that seagrass presence is almost always negatively related to predator foraging efficiency or that increasing seagrass abundance is usually associated with a decrease in predator efficiency. Because several categories of predator and prey fishes occur in seagrass habitats, further studies are needed with all of these predator–prey combinations, in order to fully clarify predator–prey fish interactions in association with seagrass structure. Seagrass fishes have been shown to respond to alterations in seagrass structure in various ways: seagrass height and/or density reduction or clearance resulted in decreased abundance of some species but increases or no change in others. Some explanations have been proposed, not all mutually exclusive, for these phenomena. Although within-patch scale processes have been well studied, room exists for improvement. For example, predator–prey fish interactions in relation to varying within-patch scale complexity is not yet fully understand. The relationships of patch size, edge effects and within-patch scale complexity also still remain unclear. Further studies, which add to the clarification of within-patch scale process, will in turn improve our understanding of larger spatial scale processes.  相似文献   

5.
1. Tiger sharks Galeocerdo cuvier are important predators in a variety of nearshore communities, including the seagrass ecosystem of Shark Bay, Western Australia. Because tiger sharks are known to influence spatial distributions of multiple prey species, it is important to understand how they use habitats at a variety of spatial scales. We used a combination of catch rates and acoustic tracking to determine tiger shark microhabitat use in Shark Bay. 2. Comparing habitat-use data from tracking against the null hypothesis of no habitat preference is hindered in Shark Bay, as elsewhere, by the difficulty of defining expected habitat use given random movement. We used randomization procedures to generate expected habitat use in the absence of habitat preference and expected habitat use differences among groups (e.g. males and females). We tested the performance of these protocols using simulated data sets with known habitat preferences. 3. The technique correctly classified sets of simulated tracks as displaying a preference or not and was a conservative test for differences in habitat preferences between subgroups of tracks (e.g. males vs. females). 4. Sharks preferred shallow habitats over deep ones, and preferred shallow edge microhabitats over shallow interior ones. The use of shallow edges likely increases encounter rates with potential prey and may have profound consequences for the dynamics of Shark Bay's seagrass ecosystem through indirect effects transmitted by grazers that are common prey of tiger sharks. 5. Females showed a greater tendency to use shallow edge microhabitats than did males; this pattern was not detected by traditional analysis techniques. 6. The randomization procedures presented here are applicable to many field studies that use tracking by allowing researchers both to determine overall habitat preferences and to identify differences in habitat use between groups within their sample.  相似文献   

6.
This paper presents the results of a series of habitat selection experiments aimed at determining if juvenile Melicertus latisulcatus generally occur on intertidal sand- and mud-flats as a result of active selection of unvegetated areas, or due to extrinsic factors (e.g. differential predation). In the laboratory, juvenile M. latisulcatus showed a clear preference for habitats containing sand irrespective of the presence or absence of predators. If sand was not available, artificial seagrass was chosen as a secondary preference but was avoided when sand alone was also present. Importantly, the combinations of habitats chosen for testing allowed us to determine that artificial seagrass provided a good surrogate for real seagrass, and that the presence of potential food (epiphytes) did not appear to influence habitat selection. There was also no difference in the habitat selected between day and night, and only minor differences with prawn size. Thus, juvenile M. latisulcatus appear to have a hierarchy of mechanisms for avoiding predators, with burying in sand being the preferred option. If burying is not possible, then seagrass is used for shelter. Active habitat selection to avoid predation appears likely to play a substantial role in determining the distribution of these animals on unvegetated sand- and mud-flats.  相似文献   

7.
Chemical signals released by predators or injured prey often induce shifts in the traits of prey species, which may in turn affect species interactions. Here we investigate the role that chemical cues play in mediating species interactions in the littoral food web of lakes. Previous studies have shown that predators induce shifts in the morphology, life history, and behavior of the freshwater snail Physella, but the ecological consequences of developing these inducible defenses are not well documented. We observed habitat use of the freshwater snail Physella gyrina along a depth gradient in a natural lake, and found they increased their use of covered habitats with increasing depth. We hypothesized that this habitat shift was due to changes in the level and type of predation risk, and that the habitat shift would affect periphyton standing crops. These hypotheses were tested in a mesocosm experiment in which we manipulated the presence of molluscivorous fish and crayfish. Predators were confined to cages and snail density was identical in all treatments, so any effects of predators were mediated through trait shifts induced by chemical cues. In the presence of fish, Physella moved under cover, but in the presence of crayfish, Physella avoided cover and moved to the water surface. These non‐lethal effects of predators on snail habitat use influenced the interaction between snails and their periphyton resources. In the presence of fish, periphyton standing crop in covered habitats was reduced to just 8% of periphyton in the absence of fish. Crayfish had no significant effect on periphyton in covered habitats, but they reduced periphyton in near‐surface habitats to 39% of the standing crop in the absence of crayfish. The combined effects of fish and crayfish were generally intermediate to their individual effects. We conclude that because chemical cues often have strong effects on individual traits and trophic interactions are sensitive to trait values, chemical cues may play an important role in shaping the structure and dynamics of food webs.  相似文献   

8.
The indirect effect of predators on prey behavior, recruitment, and spatial relationships continues to attract considerable attention. However, top predators like sharks or large, mobile teleosts, which can have substantial top–down effects in ecosystems, are often difficult to study due to their large size and mobility. This has created a knowledge gap in understanding how they affect their prey through nonconsumptive effects. Here, we investigated how different functional groups of predators affected potential prey fish populations across various habitats within Biscayne Bay, FL. Using baited remote underwater videos (BRUVs), we quantified predator abundance and activity as a rough proxy for predation risk and analyzed key prey behaviors across coral reef, sea fan, seagrass, and sandy habitats. Both predator abundance and prey arrival times to the bait were strongly influenced by habitat type, with open homogenous habitats receiving faster arrival times by prey. Other prey behaviors, such as residency and risk‐associated behaviors, were potentially driven by predator interaction. Our data suggest that small predators across functional groups do not have large controlling effects on prey behavior or stress responses over short temporal scales; however, habitats where predators are more unpredictable in their occurrence (i.e., open areas) may trigger risk‐associated behaviors such as avoidance and vigilance. Our data shed new light on the importance of habitat and context for understanding how marine predators may influence prey behaviors in marine ecosystems.  相似文献   

9.
Synopsis Behavioral preference for a structured habitat (artificial seagrass) by juvenile walleye pollock,Theragra chalcogramma, was tested in controlled laboratory experiments. We monitored position of fish in 2000 1 tanks with and without artificial seagrass present in one half of the tank. In addition, we exposed walleye pollock to a predator model, assessing their response when a grass plot was available or unavailable as a potential refuge. In the absence of predators, the fish avoided the artificial seagrass, displaying a preference for the open water side of the experimental tanks. In the presence of a predator model, however, juvenile walleye pollock readily entered the artificial seagrass plots. In addition, they often remained in the grass canopy in proximity to the predator instead of moving out of the grass to avoid the predator (when no grass was present they consistently moved to the opposite side of the tank from the predator). The behavioral choices exhibited in this study suggest that juvenile walleye pollock modify habitat selection in response to perceived predation risk, and recognize the structure provided by artificial seagrass as a potential refuge.  相似文献   

10.
Griffen BD  Byers JE 《Oecologia》2006,146(4):608-614
Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific. An erratum to this article can be found at  相似文献   

11.
Theory predicts that predators can reduce parasite abundance on prey by reducing prey density and through disproportionate predation on heavily infested individuals. We experimentally tested this prediction by examining the effects of bird predation on parasitic mite infestation of the prey lizard Acanthodactylus beershebensis. We manipulated predation by adding perches to arid scrubland, allowing avian predators to hunt for lizards in a habitat the birds would not normally use. Host density influenced parasite abundance in hatchlings, but not in older aged individuals and parasite abundance did not affect lizard host survival. Contrary to expectation mite abundance on adult lizards increased under low predation intensities. We explain these results by suggesting a novel hypothesis based on the assumption that the two components of predation, i.e. actual removal of prey and risk, exert contradictory effects on macroparasite abundance.  相似文献   

12.
We model a metapopulation of predator-prey patches using both spatially implicit or mean-field (MF) and spatially explicit (SE) approaches. We show that in the MF model there are parameter regimes for which prey cannot persist in the absence of predators, but can in their presence. In addition, there are parameter regimes for which prey may persist in isolation, but the presence of predators will increase prey patch density. Predators may thus enhance prey persistence and overall abundance. The key mechanism responsible for this effect is the occurrence of prey dispersal from patches that are occupied by both prey and predators. In addition, these patches should be either long-lived, such as that occurs when predators keep prey from overexploiting its local resource, or the presence of a predator on a patch should significantly enhance the prey dispersal out of that patch. In the SE approach these positive effects of predators on prey persistence and abundance occur for even larger parameter ranges than in the MF model. Prey dispersal from predator-prey patches may thus be important for persistence of both species as a community, independent of the modeling framework studied. Comparison of the MF and SE approaches shows that local dispersal constraints can have the edge over global dispersal for the persistence of the metapopulation in regimes where the two species have a beneficial effect on each other. In general, our model provides an example of feedback in multiple-species metapopulations that can make the implementation of conservation schemes based on single-species arguments very risky.  相似文献   

13.
Multi-factor analyses of territory quality in relation to fitness components of adults are rare, especially in non-migratory species. I studied the influence of multiple attributes of territory quality (habitat type and the abundance of food and predators) on the reproductive success and survival of a threatened Australian passerine, the southern emu-wren Stipiturus malachurus . The abundance of frequently-selected prey types (lepidoptera, diptera, hemiptera and larvae) varied significantly across territories according to habitat type. Reproductive success (number of offspring fledged) was highest in territories containing a greater proportion of tall shrubland, which had the highest insect abundance of any habitat. Closed heathland and sedge/rushland also had high food abundance compared to other habitat types, but higher fledging success occurred only within closed heathland, possibly because predator density was lower in this habitat type. High snake density was associated with reduced adult survival during the breeding season and a lower probability of nest success. In sedge/rushland, any benefits of prey abundance may therefore be offset by a high density of predators. Emu-wren age and size were unrelated to breeding output of pairs, suggesting that ecological factors may swamp effects of individual quality on emu-wren fitness components. Preservation of tall shrubland and closed heathland habitats appear to be of key conservation priority for emu-wrens.  相似文献   

14.
Krista L. Ryall  Lenore Fahrig 《Oikos》2005,110(2):265-270
Increasing intensity of land use by humans has led to loss of natural habitats, resulting in isolation of remaining habitat fragments. Using a pine-bark beetle ecosystem as a model, we tested the hypothesis that the ratio of abundance of predators to prey should decrease with increasing habitat loss at the landscape scale. We selected ten red pine ( Pinus resinosa ) sites, representing extremes of available habitat within a 2 km radius surrounding each stand. The bark beetle, Ips pini , and its coleopteran predators were sampled using baited multiple funnel traps. Effects of stand isolation were considerable; ratios of predators to prey (mean number of predators/number of prey±SE) were significantly reduced in isolated stands (0.38±0.09) as compared to those with large amounts of surrounding conifer habitat (1.63±0.41). The decline in ratio occurred both because there was: a) a lower abundance of predators (ca 0.5–0.8×) captured in isolated stands; and b) a significantly higher number of prey (ca 2.2×) captured in isolated stands. Isolation or loss of habitat, therefore, differentially affected the two trophic levels, supporting theoretical predictions. Reductions in predator abundance and, presumably, enemy-caused mortality may lead to changes in the population dynamics of their prey species, possibly leading to increased outbreaks as habitat becomes increasingly isolated.  相似文献   

15.
The relationship between prey abundance and predation is often examined in single habitat units or populations, but predators may occupy landscapes with diverse habitats and foraging opportunities. The vulnerability of prey within populations may depend on habitat features that hinder predation, and increased density of conspecifics in both the immediate vicinity and the broader landscape. We evaluated the relative effects of physical habitat, local, and neighborhood prey density on predation by brown bears on sockeye salmon in a suite of 27 streams using hierarchical Bayesian functional response models. Stream depth and width were inversely related to the maximum proportion of salmon killed, but not the asymptotic limit on total number killed. Interannual variation in predation was density dependent; the number of salmon killed increased with fish density in each stream towards an asymptote. Seven streams in two geographical groups with ≥23 years of data in common were then analyzed for neighborhood density effects. In most (12 of 18) cases predation in a stream was reduced by increasing salmon abundance in neighboring streams. The uncertainty in the estimates for these neighborhood effects may have resulted from interactions between salmon abundance and habitat that influenced foraging by bears, and from bear behavior (e.g., competitive exclusion) and abundance. Taken together, the results indicated that predator–prey interactions depend on density at multiple spatial scales, and on habitat features of the surrounding landscape. Explicit consideration of this context dependency should lead to improved understanding of the ecological impacts of predation across ecosystems and taxa.  相似文献   

16.
1. Ecologists have struggled to describe general patterns in the impacts of predators on stream prey, particularly at large, realistic spatial and temporal scales. Among the confounding variables in many systems is the presence of multiple predators whose interactions can be complex and unpredictable. 2. We studied the interactions between brook trout (Salvelinus fontinalis) and larval two‐lined salamanders (Eurycea bislineata), two dominant vertebrate predators in New England stream systems, by examining patterns of two‐lined salamander abundance in stream reaches above and below waterfalls that are barriers to fish dispersal, by measuring the effects of trout on salamander density and activity using a large‐scale manipulation of brook trout presence, and by conducting a small‐scale laboratory experiment to study how brook trout and larval two‐lined salamanders affect each other's prey consumption. 3. We captured more salamanders above waterfalls, in the absence of trout, than below waterfalls where trout were present. Salamander density and daytime activity decreased following trout addition to streams, and salamander activity shifted from aperiodic to more nocturnal with fish. Analysis of stomach contents from our laboratory experiment revealed that salamanders eat fewer prey with trout, but trout eat more prey in the presence of salamanders. 4. We suggest that as predators in streams, salamanders can influence invertebrate prey communities both directly and through density‐ and trait‐mediated interactions with other predators.  相似文献   

17.
Alto BW  Griswold MW  Lounibos LP 《Oecologia》2005,146(2):300-310
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes.  相似文献   

18.
Coastal development in Banten Bay, Indonesia, decreased seagrass coverage to only 1.5% of its surface area. We investigated the importance of seagrass as habitat for juvenile groupers (Serranidae) and snappers (Lutjanidae), by performing beam trawl hauls on a weekly basis in two seagrass locations and one mudflat area, and monthly trawl hauls in three different microhabitats (dense, mixed and patchy seagrass) in one of the seagrass locations. We studied the effects of location and microhabitat, as well as temporal patterns (diel, weekly and monthly) on the probability of occurrence and abundance of the most abundant grouper (Orange-spotted grouper, Epinephelus coioides) and snapper (Russell’s snapper, Lutjanus russellii). We found that both species were almost exclusively found in seagrass locations, with a preference for microhabitats of high complexity (dense and mixed microhabitats). L. russellii had a higher probability of catch and abundance during the night, most probably because of its ability to avoid the beam trawl during daytime sampling. In addition there was an effect of week and month on the presence and abundance of both species, but patterns were unclear, probably because of high fishing pressure on juvenile groupers and snappers by push net fishermen. Groupers and snappers mainly fed on abundant shrimps, and to a lesser extent on fish. Moreover, juveniles find protection against predators in seagrass, which confirmed the critical role of quantity and quality of seagrass areas for juvenile groupers and snappers in Banten Bay.  相似文献   

19.
Habitat complexity can mediate interactions among predators and herbivores and influences arthropod population density and community structure. The abundance of many predatory mites (Acari: Phytoseiidae) is positively associated with abundance of non‐glandular trichomes. We hypothesized that (1) increasing the complexity (trichome density mimicked with cotton fiber patches) of the habitat that predatory mites encounter on leaves would reduce adult dispersal from plants, and (2) increasing habitat complexity would reduce the time that mites spend walking. Typhlodromus pyri Scheuten retention on plants increased linearly in the presence of trichome mimics; mites placed on plants lacking leaf trichomes showed a behavioral response that led to active dispersal. Phytoseiid retention increased with both fiber patch size and fiber density within patches. Moving fiber patches from the underside of the leaf to the upper leaf surface did not change phytoseiid retention but did alter egg distribution, suggesting trichomes do not exclusively influence phytoseiid behavior. Phytoseiid activity level as measured by the amount of time spent walking did not decrease with the addition of fibers. Overall, increasing habitat complexity in the form of non‐glandular trichomes strongly reduced T. pyri dispersal behavior; the predatory mites showed a consistent preference for complex trichome‐rich habitat that was manifest both rapidly and in absence of predators. Hence, the frequently observed pattern of population‐level accumulation of phytoseiids on trichome‐rich plants appears to be driven by a behavioral response to the presence and abundance of non‐glandular trichomes on the leaf surface manifested in the level of dispersal and/or retention. The primary implication of phytoseiid–habitat interactions for biocontrol programs is that where plants have no trichomes, T. pyri will not establish. Whether this behavioral response pattern is a general response of phytoseiids to leaf trichomes or varies with species is a question that remains unanswered.  相似文献   

20.
Predation has been invoked as a factor synchronizing the population oscillations of sympatric prey species, either because predators kill prey unselectively (the Shared Predation Hypothesis; hereafter SPH), or because predators switch to alternative prey after a density decline in their main prey (the Alternative Prey Hypothesis; APH). A basic assumption of the APH is that the impact of predators on alternative prey depends more on the density of main prey than on the predator/alternative prey ratio. Both SPH and APH assume that the impact of predators on alternative prey is at least periodically strong enough to depress prey populations. To examine these assumptions, we utilized data from replicated field experiments in large areas where we reduced the breeding densities of avian predators during three years and the numbers of least weasels (Mustela nivalis) in two years when vole populations declined. In addition, we reduced the breeding densities of avian predators in two years when vole populations were high. The reduction of least weasels increased the abundance of their alternative prey, small birds breeding on the ground, but did not affect the abundance of common shrews (Sorex araneus). In years when vole populations declined, the reduction of avian predators increased the abundance of their alternative prey, common shrews and small birds. Therefore, vole‐eating predators do at least periodically depress the abundance of their alternative prey. At high vole densities, the reduction of avian predators did not increase the abundance of common shrews, although the ratio of avian predators to alternative prey was similar to years when vole populations declined, which supported APH. In contrast, the abundance of small birds increased after the reduction of avian predators also at high vole densities, which supported SPH. The manipulations had no obvious effect on the number of game birds, which are only occasionally killed by these small‐sized predators. We conclude that in communities where most predators are small or specialize on a single prey type, the synchronizing impact of predation is restricted to a few similar‐sized species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号