首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

2.
The beta2 integrin LFA-1 (CD11a/CD18) mediates adhesion of lymphocytes to cells expressing ICAM. The strength of this adhesion is regulated by different signals delivered by cytokines and chemokines, and by the TCR in the case of T cells. To determine the receptor-ligand interactions required for adhesion of resting NK cells, Drosophila cells expressing different combinations of ligands of human NK cell receptors were generated. Expression of ICAM-1 alone was sufficient for an adhesion of resting NK cells that was sensitive to inhibitors of src family kinase and of phosphatidylinositol 3-kinase. Binding of resting NK cells to solid-phase ICAM-1 showed similar signaling requirements. A pulse of either IL-2 or IL-15 to resting NK cells resulted in strongly enhanced, actin-dependent adhesion to insect cells expressing ICAM-1 alone. Coexpression of either LFA-3 (CD58) or CD48 with ICAM-1 resulted in strong adhesion by resting NK cells, even in the absence of cytokines. Therefore, receptors for LFA-3 and CD48 on resting NK cells strengthen the adhesion mediated by LFA-1.  相似文献   

3.
Nielsen N  Ødum N  Ursø B  Lanier LL  Spee P 《PloS one》2012,7(2):e31959
In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16(+)CD56(dim) and CD16(dim/-)CD56(bright). An expansion in the CD56(bright) NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4(+) T cells by CD56(dim) and CD56(bright) autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+) T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4(+) T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56(bright) NK cells but not by CD56(dim) NK cells. NK cell killing of activated CD4(+) T cells was suppressed by HLA-E on CD4(+) T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim) and CD56(bright) NK cell-mediated elimination of activated autologous CD4(+) T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation.  相似文献   

4.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

5.
Cytotoxic functions and susceptibility to apoptosis are crucial aspects of NK cells suitable to counter cancer after infusion in oncologic patients. To test the feasibility and the usefulness of infusing in vitro generated NK cells, these two features were investigated in NK cells developed in vitro from CD34? hematopoietic progenitors. Purified CD34? cells were cultured for 15-30 days with FLT-3 ligand (FLT3-L) and IL-15 with or without IL-21. To induce terminal differentiation, NK cells were cultured for further 15 days with IL-15, IL-21, or their combination. A CD56(dim) /CD16? NK subset, expressing high level of perforin, granzymes, and LFA-1, appeared early in cultures with FLT3-L, IL-15, and IL-21, but it quickly died, indicating its predisposition to apoptosis. On the contrary, CD56(bright) NK cells generated after 30 days of culture with FLT3-L plus IL-15 did not show a considerable apoptosis, nevertheless only a subset of these cells expressed granzyme-B, perforin, LFA-1, and CD94-CD159a heterodimer, indicating a functional immaturity. Interestingly, further 15 days of culture with IL-21 plus IL-15 did not induce the generation of CD56(dim) cells from the CD56(bright) subset and actually inhibited IL-15-induced maturation/activation of this latter subset. In fact, IL-15 alone upregulated granzyme-B, TRAIL, Fas ligand, CD94-CD159a, LFA-1, CD16, KIRs, and TRAIL-R2 on CD56(bright) NK cells. Our results suggest that during differentiation CD56(bright) NK cells, similarly to mature activated NK cells, become highly cytotoxic and are relatively resistant to apoptosis induced by TNF family members.  相似文献   

6.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

7.
8.
In mice lacking IL-15, NK cell development is arrested at immature stages, providing an opportunity to investigate the earliest developing NK cells that would respond to IL-15. We show in this study that immature NK cells were present in the spleen as well as bone marrow (BM) and contained IL-15-high-responder cells. Thus, mature NK cells were generated more efficiently from IL-15(-/-) than from control donor cells in radiation BM chimeras, and the rate of IL-15-induced cell division in vitro was higher in NK cells in the spleen and BM from IL-15(-/-) mice than in those from wild-type mice. Phenotypically, NK cells developed in IL-15(-/-) mice up to the minor but discrete CD11b(-)CD27(+)DX5(hi)CD51(dull)CD127(dull)CD122(hi) stage, which contained the majority of Ly49G2(+) and D(+) NK cells both in the spleen and BM. Even among wild-type splenic NK cells, IL-15-induced proliferation was most prominent in CD11b(-)DX5(hi) cells. Notably, IL-15-mediated preferential expansion (but not conversion from Ly49(-) cells) of Ly49(+) NK cells was observed in vitro only for NK cells in the spleen. These observations indicated the uneven distribution of NK cells of different developing stages with variable IL-15 responsiveness in these lymphoid organs. Immature NK cells in the spleen may contribute, as auxiliaries to those in BM, to the mature NK cell compartment through IL-15-driven extramarrow expansion under steady-state or inflammatory conditions.  相似文献   

9.
Despite recent gains in knowledge regarding CD1d-restricted NKT cells, very little is understood of non-CD1d-restricted NKT cells such as CD8(+)NK1.1(+) T cells, in part because of the very small proportion of these cells in the periphery. In this study we took advantage of the high number of CD8(+)NK1.1(+) T cells in IL-15-transgenic mice to characterize this T cell population. In the IL-15-transgenic mice, the absolute number of CD1d-tetramer(+) NKT cells did not increase, although IL-15 has been shown to play a critical role in the development and expansion of these cells. The CD8(+)NK1.1(+) T cells in the IL-15-transgenic mice did not react with CD1d-tetramer. Approximately 50% of CD8(+)NK1.1(+) T cells were CD8alphaalpha. In contrast to CD4(+)NK1.1(+) T cells, which were mostly CD1d-restricted NKT cells and of which approximately 70% were CD69(+)CD44(+), approximately 70% of CD8(+)NK1.1(+) T cells were CD69(-)CD44(+). We could also expand similar CD8alphaalphaNK1.1(+) T cells but not CD4(+) NKT cells from CD8alpha(+)beta(-) bone marrow cells cultured ex vivo with IL-15. These results indicate that the increased CD8alphaalphaNK1.1(+) T cells are not activated conventional CD8(+) T cells and do not arise from conventional CD8alphabeta precursors. CD8alphaalphaNK1.1(+) T cells produced very large amounts of IFN-gamma and degranulated upon TCR activation. These results suggest that high levels of IL-15 induce expansion or differentiation of a novel NK1.1(+) T cell subset, CD8alphaalphaNK1.1(+) T cells, and that IL-15-transgenic mice may be a useful resource for studying the functional relevance of CD8(+)NK1.1(+) T cells.  相似文献   

10.
NK cell populations were derived from murine splenocytes stimulated by IL-2, IL-15, or the combination of IL-12 and IL-18. Whereas NK cells derived with the latter cytokines consisted of an homogeneous population of NK cells (DX5+CD3-), those derived with IL-2 or IL-15 belonged to two different populations, namely NK cells (DX5+CD3-) and T-NK cells (DX5+CD3+). Among NK cells, only those derived with IL-12/IL-18 produced detectable levels of cytokines, namely IFN-gamma, IL-10, and IL-13 (with the exception of IL-13 production by NK cells derived with IL-2). As for T-NK cells, IL-2-stimulated cells produced a wide range of cytokines, including IL-4, IL-5, IL-9, IL-10, and IL-13, but no IFN-gamma, whereas IL-15-derived T-NK cells failed to produce any cytokine. Switch-culture experiments indicated that T-NK cells derived in IL-2 and further stimulated with IL-12/IL-18 produced IFN-gamma and higher IL-13 levels. Next, we observed that NK/T-NK cell populations exerted distinct effects on Ig production by autologous splenocytes according to the cytokines with which they were derived. Thus, addition of NK cells derived in IL-12/IL-18 inhibited Ig production and induced strong cytotoxicity against splenocytes, whereas addition of NK or T-NK cells grown in IL-2 or IL-15 did not. Experiments performed in IFN-gammaR knockout mice demonstrated that IFN-gamma was not involved in the killer activity of IL-12/IL-18-derived NK cells. The hypothesis that their cytotoxic activity was related to the induction of target apoptosis was confirmed on murine A20 lymphoma cells. Experiments performed in MRL/lpr mice indicated that IL-12/IL-18-derived NK cells displayed their distinct killer activity through a Fas-independent pathway. Finally, perforin was much more expressed in IL-12/IL-18-derived NK cells as compared with IL-2- or IL-15-derived NK cells, an observation that might explain their unique cytotoxicity.  相似文献   

11.
Intestinal intraepithelial lymphocytes (IELs), which reside between the basolateral faces of intestinal epithelial cells (IECs), provide a first-line defense against pathogens via their cytotoxic activity. Although IEC-derived IL-7 and IL-15 are key regulatory cytokines for the development and activation of IELs, we report here that IL-15 but not IL-7 mediates the reciprocal interaction between IELs and IECs, an important interaction for the regulation of appropriate mucosal immunohomeostasis. IL-15-treated IELs induced cell death in IECs via the cytotoxic activity in vitro. Among the different subsets of IL-15-treated IELs, CD4(-)CD8(-)TCR(-) IELs, which express NK marker (DX5 or NK1.1), showed the most potent syngenic IEC killing activity. These intraepithelial NK cells expressed Ly-49 molecules, NKG2 receptors, and perforin. These results suggest the possibility that the cell death program of IECs could be regulated by self-produced IL-15 through the activation of intraepithelial NK cells.  相似文献   

12.
We investigated the effects of IL-12 and IL-18 on unstimulated murine splenocytes and observed that the two cytokines strongly synergized for their proliferation, whereas IL-12 and IL-18 alone were essentially inactive in this respect. Phenotypical and functional analyses of cells proliferating in response to IL-12 and IL-18 revealed that large granular Ly-49C(+)DX5(+)CD3(-)NK blasts were expanded in these cultures and that they displayed cytotoxic activity against Yac-1 cells, a murine NK cell target. Further analyses indicated three major differences between NK cells appearing in response to IL-12 and IL-18 and those derived in the presence of other NK cell growth factors, such as IL-2 or IL-15. First, a population of T-NK cells, i.e. expressing T cell (TCRalphabeta, CD3) and NK cell (Ly-49) markers, was detected amongst cells growing in IL-2 or IL-15 but not in cultures supplemented with IL-12 and IL-18. Second, most NK cells derived with IL-2 or IL-15 expressed the NK1.1 antigen, while those derived with IL-12 and IL-18 did not. Finally, striking differences were observed regarding cytokine production. Cells stimulated with IL-12 and IL-18 in combination, but not with IL-2 or IL-15, produced IFN-gamma, IL-3, IL-6 and TNF. IFN-gamma was not involved in the response of NK cells to IL-12 and IL-18, as indicated by experiments demonstrating that the combination of the two cytokines displayed similar effects on spleen cells from IFN-gammaR-knock-out mice. Receptor (IL-12Rbeta1, IL-12Rbeta2 and IL-18R) gene expression studies did not indicate that the mechanism underlying the synergy between IL-12 and IL-18 involved reciprocal induction of their receptors. Taken together, our results demonstrate that IL-12 and IL-18 exert striking synergistic activities for NK cell proliferation and activation, distinct from those induced by IL-2 or IL-15.  相似文献   

13.
NK cells differentiate in adult mice from bone marrow hemopoietic progenitors. Cytokines, including those that signal via receptors using the common cytokine receptor gamma-chain (gamma(c)), have been implicated at various stages of NK cell development. We have previously described committed NK cell precursors (NKPs), which have the capacity to generate NK cells, but not B, T, erythroid, or myeloid cells, after in vitro culture or transfer to a fetal thymic microenvironment. NKPs express the CD122 Ag (beta chain of the receptors for IL-2/IL-15), but lack other mature NK markers, including NK1.1, CD49b (DX5), or members of the Ly49 gene family. In this report, we have analyzed the roles for gamma(c)-dependent cytokines in the generation of bone marrow NKP and in their subsequent differentiation to mature NK cells in vivo. Normal numbers of NKPs are found in gamma(c)-deficient mice, suggesting that NK cell commitment is not dependent on IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. Although IL-2, IL-4, and IL-7 have been reported to influence NK cell differentiation, we find that mice deficient in any or all of these cytokines have normal NK cell numbers, phenotype, and effector functions. In contrast, IL-15 plays a dominant role in early NK cell differentiation by maintaining normal numbers of immature and mature NK cells in the bone marrow and spleen. Surprisingly, the few residual NK cells generated in absence of IL-15 appear relatively mature, expressing a variety of Ly49 receptors and demonstrating lytic and cytokine production capacity.  相似文献   

14.
15.
To delineate factors involved in NK cell development, we established an in vitro system in which lineage marker (Lin)-, c-kit+, Sca2+ bone marrow cells differentiate into lytic NK1.1+ but Ly49- cells upon culture in IL-7, stem cell factor (SCF), and flt3 ligand (flt3L), followed by IL-15 alone. A comparison of the ability of IL-7, SCF, and flt3L to generate IL-15-responsive precursors suggested that NK progenitors express the receptor for flt3L. In support of this, when Lin-, c-kit+, flt3+ or Lin-, c-kit+, flt3- progenitors were utilized, 3-fold more NK cells arose from the flt3+ than from the flt3- progenitors. Furthermore, NK cells that arose from flt3- progenitors showed an immature NK1.1dim, CD2-, c-kit+ phenotype as compared with the more mature NK1.1bright, CD2+/-, c-kit- phenotype displayed by NK cells derived from flt3+ progenitors. Both progenitors, however, gave rise to NK cells that were Ly49 negative. To test the hypothesis that additional marrow-derived signals are necessary for Ly49 expression on developing NK cells, flt3+ progenitors were grown in IL-7, SCF, and flt3L followed by culture with IL-15 and a marrow-derived stromal cell line. Expression of Ly49 molecules, including those of which the MHC class I ligands were expressed on the stromal or progenitor cells, as well as others of which the known ligands were absent, was induced within 6-13 days. Thus, we have established an in vitro system in which Ly49 expression on developing NK cells can be analyzed and possibly experimentally manipulated.  相似文献   

16.
IFN-beta 2/IL-6 augments the activity of human natural killer cells   总被引:8,自引:0,他引:8  
MHC nonrestricted cytotoxic cells play an important role in the killing of tumor cells in vitro and potentially in vivo. The activity of these cells is regulated by several cytokines such as IL-2 and IFN. In the present study we provide first evidence that IL-6 significantly augments the cytotoxic activity of human NK cells. IL-6 is produced by many different cells and is also known as IFN-beta 2, B cell stimulatory factor 2, hybridoma growth factor, hepatocyte-stimulating factor, and 26 kDa protein. IL-6 stimulates the activity of human CD3- NK cells but not that of CD3+ non-MHC-restricted cytotoxic T lymphocytes. As is the case with IL-2, the IL-6-mediated augmented cytotoxicity was a result of a more efficient lysis, but was not caused by an increased effector to target cell binding. Moreover, the effect of IL-6 on NK cell activity was blocked by a mAb directed against IL-2, and IL-6 itself was found to be a potent inducer of IL-2 production in cultured human PBMC. Thus it may be concluded that IL-6 enhances the cytotoxic activity of NK cells via IL-2. This newly recognized property of IL-6, which is produced by almost any cell, may be of importance in host defense against microbes and malignancies and therefore could contribute to improve the adoptive immunotherapy by using lymphokine-activated killer cells.  相似文献   

17.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

18.
Cytotoxicity and proliferation of NK-like T (CIK) cells are dependent on the continuous presence of exogenous cytokines, but it is not known which cytokine is optimal. Here, we compared the effect of exogenous interleukin 2 (IL-2), interleukin 7 (IL-7) or interleukin 12 (IL-12) on the generation of CIK cells in addition to IL-1, interferon-gamma and anti-CD3 antibodies. Cell surface markers important for cytotoxic activity and adhesion were defined and cytokines leading to their optimal expression were determined. The most important findings were: (a) IL-12 generates the most CD3/CD56-double-positive CIK cells, (b) the expression of LFA-1/CD11a which is important for cytotoxic activity is highest with IL-7, and (c) IL-7 also generates the most CD28-positive cells which may enhance T cell receptor co-stimulation. In summary, essential differences concerning antigen expression were found when generating CIK cells using IL-7 or IL-12 instead of IL-2. In particular, IL-12 may be of interest due to the high expansion of CD56 positive cells in CIK cell cultures and the important role of these cells in mediating cytotoxicity towards malignant tissues.  相似文献   

19.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

20.
Innate effector cells that produce Th2-type cytokines are critical in Th2 cell-mediated immune responses. However, it is not known how these cells acquire the ability to produce Th2 cytokines. IL-4 is a potent inducer that directs differentiation of naive CD4(+) T cells into CD4(+) Th2 effector cells. To determine whether IL-4 can induce differentiation and expansion of Th2 cytokine-producing innate cells, we used mice whose il-4 gene was replaced by a knock-in green fluorescence protein (gfp) gene. We found that, directly ex vivo, IL-4 increased the number of GFP(+) cells in the airway and the lung tissue in an Ag-specific manner. The majority of GFP(+) cells were eosinophils, suggesting that IL-4 plays a pivotal role in expanding IL-4-producing eosinophils in vivo. IL-4-producing eosinophils showed some unique features compared with IL-4-producing CD4(+) T cells. They exhibited biallelic expression of the il-4 gene when stimulated and were more dominant IL-4- and IL-5-producing cells. Furthermore, we show that IL-4 drove bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils in vitro. These results strongly suggest IL-4 is a potent factor in directing bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号