首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

2.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

3.
Intercellular adhesion molecule-1 (ICAM-1) is found on the surface of many hemopoietic and non-hemopoietic cells and can function as an adhesive ligand for the integrin, leukocyte function associated molecule-1 (LFA-1, CD11a/CD18). ICAM-1/LFA-1 interaction is thought to be of importance in many immune mediated cell-cell adhesion reactions. Recently, the major human rhinovirus (HRV) receptor has been identified as ICAM-1. HRV has been shown to bind specifically to ICAM-1 on transfected COS cells and to purified ICAM-1, which has been adsorbed to plastic microtiter wells. We have compared the ability of ICAM-1 expressed on the surface of human fibroblasts (FB) to function as a receptor for HRV as well as a receptor for LFA-1-bearing human T lymphocytes. We show that FB stimulation by the cytokines IFN-gamma or IL-1, both known inducers of ICAM-1 synthesis and expression in FB, induced an increase in HRV binding to treated cells, which could be inhibited by antibody to ICAM-1. In contrast, only IFN-gamma and not IL-1 treatment of FB resulted in an increased adhesion of T lymphocytes. Binding of HRV to IFN-gamma-treated FB inhibited the subsequent adhesion of T cells. We also show that prior stimulation of FB with IL-1 enhanced the adhesion of HRV to IFN-gamma-stimulated cells, although IL-1 pretreatment was inhibitory for T cell adhesion. As these two cytokines both up-regulate ICAM-1 on the surface of human FB, the contrasting effects of IFN-gamma and IL-1 on human FB ICAM-1 adhesion to HRV and to LFA-1 suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may contribute to its specificity of ligand recognition.  相似文献   

4.
Lymphokine-activated killer (LAK) cells are peripheral blood lymphocytes (PBLs) that possess the ability to kill target cells in a non-major histocompatibility complex (MHC)-restricted manner. Both NK and T cells can be stimulated with interleukin-2 (IL-2) to become LAK cells. We previously reported that the interaction of LAK cells with tumor cells also induces the secretion of interferon-gamma (IFN-gamma). The NK subset of LAK (LAK-NK) cells is stimulated by tumor cells to secrete IFN-gamma in a non-MHC-restricted manner while the T cell subset of LAK (LAK-T) cells is stimulated to secrete IFN-gamma upon cross-linking of the T cell receptor (TCR)-CD3 complex. We here report that LAK-T cells stimulated with anti-CD3 mAbs and tumor cells secrete two additional cytokines, tumor necrosis factor-alpha (TNF-alpha) and TNF-beta/lymphotoxin (TNF-beta). In addition, we demonstrate that at least four other structurally unrelated molecules, in addition to the TCR-CD3 complex, on LAK-T cells participate in the stimulation of IFN-gamma, TNF-alpha, and TNF-beta production. These molecules are the lymphocyte function associated antigen-1 (LFA-1), lymphocyte function associated antigen-2 (LFA-2), CD44, and CD45. LFA-1 is an integrin, LFA-2 is a member of the immunoglobulin supergene family, CD44 is homologous to the cartilage link proteins, and CD45 is a tyrosine phosphatase. Ligands to three of these molecules have been identified; ICAM-1, LFA-3, and hyaluronic acid binding to LFA-1, LFA-2, and CD44, respectively. LFA-1, LFA-2, and CD44 are reported to function both as adhesion molecules and as costimulators in resting T cells. Our data suggest that these three molecules enhance IFN-gamma, TNF-alpha, and TNF-beta production by augmenting LAK-T cell to tumor cell adhesion and also by functioning as costimulators.  相似文献   

5.
LFA-1 contributes an early signal for NK cell cytotoxicity   总被引:11,自引:0,他引:11  
Cytotoxicity of human NK cells is activated by receptors that bind ligands on target cells, but the relative contribution of the many different activating and inhibitory NK cell receptors is difficult to assess. In this study, we describe an experimental system that circumvents some of the difficulties. Adhesion through beta2 integrin LFA-1 is a common requirement of CTLs and NK cells for efficient lysis of target cells. However, the contribution of LFA-1 to activation signals for NK cell cytotoxicity, besides its role in adhesion, is unclear. The role of LFA-1 was evaluated by exposing NK cells to human ICAM-1 that was either expressed on a Drosophila insect cell line, or directly coupled to beads. Expression of ICAM-1 on insect cells was sufficient to induce lysis by NK cells through LFA-1. Coexpression of peptide-loaded HLA-C with ICAM-1 on insect cells blocked the LFA-1-dependent cytotoxicity of NK cells that expressed HLA-C-specific inhibitory receptors. Polarization of cytotoxic granules in NK cells toward ICAM-1- and ICAM-2-coated beads showed that engagement of LFA-1 alone is sufficient to initiate activation signals in NK cells. Thus, in contrast to T cells, in which even adhesion through LFA-1 is dependent on signals from other receptors, NK cells receive early activation signals directly through LFA-1.  相似文献   

6.
Optimal differentiation of cytotoxic NK cells is important to provide protective innate immunity to patients after bone marrow transplantation. In vitro differentiation of CD56(+)CD3(-) NK cells takes weeks and is supported by several cytokines, including IL-2, IL-7, and IL-15, and thus can be useful for immunotherapy. However, IL-2 therapy is problematic in vivo, and NK cells differentiated in vitro with only IL-7 lack cytotoxicity. We assessed whether human NK cells initially differentiated in vitro from CD34(+)Lin(-) bone marrow cells with IL-7 could acquire cytotoxicity after exposure to additional cytokines and what changes promoted cytotoxicity. The cells cultured with IL-7 already had granzyme B as well as perforin, as previously reported, the proteins of cytotoxic granules. The cells also lacked LFA-1. After 1 wk of secondary culture with either IL-2 or IL-15, but not with IL-12 or IL-18, the IL-7-cultured cells acquired cytotoxicity. IL-2 or IL-15 also induced LFA-1. Ab to the LFA-1 subunits CD11a and CD18 blocked lysis by the NK cells, indicating that the new LFA-1 correlated with, and was essential for, the cytotoxic function of the in vitro generated cells. The LFA-1 also participated in target cell binding by the in vitro differentiated cells. In this study, we demonstrated a new function for IL-15, the induction of LFA-1 in NK progenitor cells, and that IL-15 does more than merely support NK progenitor cell proliferation. The efficacy after only 1 wk of IL-15 administration is a positive practical feature that may apply to human therapy.  相似文献   

7.
Intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured umbilical vein and saphenous vein endothelial cells was upregulated between 2.5- and 40-fold by rIL-1, rTNF, LPS and rIFN gamma corresponding to up to 5 X 10(6) sites/cell. Endothelial cell ICAM-1 was a single band of 90 kD in SDS-PAGE. Purified endothelial cell ICAM-1 reconstituted into liposomes and bound to plastic was an excellent substrate for both JY B lymphoblastoid cell and T lymphoblast adhesion. Adhesion to endothelial cell ICAM-1 in planar membranes was blocked completely by monoclonal antibodies to lymphocyte function associated antigen-1 (LFA-1) or ICAM-1. Adhesion to artificial membranes was most sensitive to ICAM-1 density within the physiological range found on resting and stimulated endothelial cells. Adhesion of JY B lymphoblastoid cells, normal and genetically LFA-1 deficient T lymphoblasts and resting peripheral blood lymphocytes to endothelial cell monolayers was also assayed. In summary, LFA-1 dependent (60-90% of total adhesion) and LFA-1-independent basal adhesion was observed and the use of both adhesion pathways by different interacting cell pairs was increased by monokine or lipopolysaccharide stimulation of endothelial cells. The LFA-1-dependent adhesion could be further subdivided into an LFA-1/ICAM-1-dependent component which was increased by cytokines and a basal LFA-1-dependent, ICAM-1-independent component which did not appear to be affected by cytokines. We conclude that ICAM-1 is a regulated ligand for lymphocyte-endothelial cell adhesion, but at least two other major adhesion pathways exist.  相似文献   

8.
Activation of resting human CD4+ T cells mediated by mAb ligation of the TCR/CD3 complex requires costimulatory signals to result in proliferation; these can be provided by intercellular cell adhesion molecule-1 (ICAM-1, CD54) a natural ligand of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18). We analyzed early signaling events involved in T cell activation to determine the contribution by the LFA-1/ICAM-1 interaction. We studied in detail the hydrolysis of phosphatidylinositol(4,5)bisphosphate and intracellular levels of free Ca2+ during stimulation with beads coated with the CD3 mAb OKT3 alone or in combination with purified ICAM-1 protein. Our investigations show no response to LFA-1/ICAM-1 alone, but that costimulation by LFA-1/CAM-1 interaction induces prolonged inositol phospholipid hydrolysis (up to 4 h), resulting in generation of both inositol(1,4,5)phosphate3 and inositol(1,3,4,5)phosphate4 and their derivatives. Based on studies with cycloheximide, this costimulatory effect of prolonged inositol phospholipid hydrolysis appears dependent in part on de novo protein synthesis. A sustained increase in intracellular levels of free Ca2+ level is also observed after LFA-1/ICAM-1 costimulation, which is at least partly dependent on extracellular sources of Ca2+. Kinetic studies indicate that costimulation requires a minimal period of 4 h of LFA-1/ICAM-1 interaction to provide maximal costimulation for OKT3-mediated T cell proliferation. Thus, the necessary costimulation required for OKT3-mediated proliferation in this model system may be provided by an extended LFA-1/ICAM-1 interaction that in combination with OKT3 mAb leads to signal-transducing events, resulting in prolonged phospholipase C activation and phosphatidylinositol(4,5)bisphosphate hydrolysis, and a sustained increase in intracellular levels of free Ca2+.  相似文献   

9.
Adhesion molecules are important for cell trafficking and delivery of secondary signals for stimulation of T cells and antigen-presenting cells (APCs) in a variety of immune and inflammatory responses. Adhesion molecules lymphocyte function-associated antigen (LFA)-1 and CD2 on T cells recognize intercellular adhesion molecule (ICAM)-1 and LFA-3 on APCs, respectively. Recent studies have suggested that these molecules might play a regulatory role in antigen-specific immune responses. To investigate specific roles of adhesion molecules in immune induction we coimmunized LFA-3 and ICAM-1 cDNAs with a gD plasmid vaccine and then analyzed immune modulatory effects and protection against lethal herpes simplex virus (HSV)-2 challenge. We observed that gD-specific IgG production was enhanced by LFA-3 coinjection. However, little change in IgG production was observed by ICAM-1 coinjection. Furthermore, both Th1 and Th2 IgG isotype production was driven by LFA-3. LFA-3 also enhanced Th cell proliferative responses and production of interleukin (IL)-2, interferon-gamma, IL-4, and IL-10 from splenocytes. In contrast, ICAM-1 showed slightly increasing effects on T-cell proliferation responses and cytokine production. beta-Chemokine production (RANTES, MIP-1alpha, and MCP-1) was also influenced by LFA-3 or ICAM-1. When animals were challenged with a lethal dose of HSV-2, LFA-3-coimmunized animals exhibited an enhanced survival rate, as compared to animals given ICAM-1 or gD DNA vaccine alone. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vitro and in vivo T-cell subset deletion. These studies demonstrate that adhesion molecule LFA-3 can play an important role in generating protective antigen-specific immunity in the HSV model system through increased induction of CD4+ Th1 T-cell subset.  相似文献   

10.
11.
IL-18 time- and concentration-dependently upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in a monocyte population in human PBMC as determined by FACS analysis while the expression of CD11a, CD18, CD29, CD44, and CD62L in monocytes and that of ICAM-1, CD11a, CD18, CD29, CD44, and CD62L in T cells was not influenced by IL-18. IL-18 in the same concentration range stimulated the production of IL-12, TNF-alpha, and IFN-gamma in culture of PBMC; however, IL-18-induced expression of ICAM-1 in monocytes was not inhibited by anti-IL-12, anti-TNF-alpha, or anti-IFN-gamma Ab, suggesting the independence of the upregulating effect of IL-18 on endogenous IL-12, TNF-alpha, and IFN-gamma production. IL-18 also induced the aggregation of PBMC, which was prevented by anti-ICAM-1 and anti-LFA-1 Abs. On the other hand, anti-ICAM-1 and anti-LFA-1 Abs inhibited IL-18-induced production of three cytokines, IL-12, IFN-gamma, and TNF-alpha, by 60 and 40%, respectively. These results strongly suggested that the IL-18-induced upregulation of ICAM-1 and the subsequent adhesive interaction through ICAM-1 on monocytes and LFA-1 on T/NK cells generate an additional stimulatory signaling as well as an efficient paracrine environment for the IL-18-initiated cytokine cascade.  相似文献   

12.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

13.
CD98 is a multifunctional heterodimeric membrane protein involved in the regulation of cell adhesion as well as amino acid transport. We show that CD98 cross-linking persistently activates Rap1 GTPase in a LFA-1-dependent manner and induces LFA-1/ICAM-1-mediated cell adhesion in lymphocytes. Specific phosphatidylinositol-3-kinase (PI3K) inhibitors suppressed both LFA-1 activation and Rap1GTP generation, and abrogation of Rap1GTP by retroviral over-expression of a specific Rap1 GTPase activating protein, SPA-1, totally inhibited the LFA-1/ICAM-1-mediated cell adhesion. These results suggest that CD98 cross-linking activates LFA-1 via the PI3K signaling pathway and induces accumulation of Rap1GTP in a LFA-1-dependent manner, which in turn mediates the cytoskeleton-dependent cell adhesion process.  相似文献   

14.
Cell adhesion molecules (CAM) participate in interactions between lymphocytes, accessory cells, and target cells that are critical in the generation of effective immune responses. To characterize the involvement of CAM in NK and lymphokine activated killer (LAK) activities, we examined the expression of several CAM by freshly isolated human NK cells and by NK cells activated in vitro with IL-2, and compared this to CAM expression by T lymphocytes under similar conditions. Freshly isolated human NK cells were uniformly LFA-3 (CD58)+ and expressed two to three-fold higher surface levels of LFA-1 (CD11a/CD18) than resting T lymphocytes. More NK cells than T cells also expressed phenotypically detectable levels of intercellular adhesion molecule-1 (CD54). After in vitro incubation with IL-2, human NK cells demonstrated four- to sixfold increases in surface levels of CD11a/CD18, CD2, CD54, CD58, and the NK cell-associated Ag NKH-1 (CD56). Furthermore, essentially all NK cells became CD54+ within 3 days of exposure to IL-2. T cells did not demonstrate comparable up-regulation of CAM after incubation with IL-2. Increases in NK cell CAM expression were associated with enhanced formation of E:T cell conjugates, enhanced killing of NK-sensitive targets, and the induction of cytotoxicity for previously NK-resistant targets (LAK activity). The LAK activity induced by exogenous IL-2 could be partially inhibited by anti-CD2, anti-CD11a, or anti-CD54 antibodies and almost completely abrogated by anti-CD2 and anti-CD11a in combination. These studies suggest that CAM play a central role in the regulation of NK cytolysis, and that changes in CAM expression may alter the target cell specificity of activated NK effectors.  相似文献   

15.
16.
Patients with the leukocyte adhesion deficiency (LAD) syndrome have a genetic defect in the common beta 2-chain (CD18) of the leukocyte integrins. This defect can result in the absence of cell surface expression of all three members of the leukocyte integrins. We investigated the capacity of T cell clones obtained from the blood of an LAD patient and of normal T cell clones to adhere to human umbilical vein endothelial cells (EC). Adhesion of the number of LAD T cells to unstimulated EC was approximately half of that of leukocyte function-associated antigen (LFA)-1+ T cells. Stimulation of EC with human rTNF-alpha resulted in an average 2- and 2.5-fold increase in adhesion of LFA-1+ and LFA-1- cells, respectively. This effect was maximal after 24 h and lasted for 48 to 72 h. The involvement of surface structures known to participate in cell adhesion (integrins, CD44) was tested by blocking studies with mAb directed against these structures. Adhesion of LFA-1+ T cells to unstimulated EC was inhibited (average inhibition of 58%) with mAb to CD11a or CD18. Considerably less inhibition of adhesion occurred with mAb to CD11a or CD18 (average inhibition, 20%) when LFA-1+ T cells were incubated with rTNF-alpha-stimulated EC. The adhesion of LFA-1- T cells to EC stimulated with rTNF-alpha, but not to unstimulated EC, was inhibited (average inhibition, 56%) by incubation with a mAb directed to very late antigen (VLA)-4 (CDw49d). In contrast to LAD T cell clones and the LFA-1+ T cell line Jurkat, mAb to VLA-4 did not inhibit adhesion of normal LFA-1+ T cell clones to EC, whether or not the EC had been stimulated with rTNF-alpha. We conclude that the adhesion molecule pair LFA-1/intercellular adhesion molecule (ICAM)-1 plays a major role in the adhesion of LFA-1+ T cell clones derived from normal individuals to unstimulated EC. Adhesion of LFA-1-T cells to TNF-alpha-stimulated EC is mediated by VLA-4/vascular cell adhesion molecule (VCAM)-1 interactions. Since we were unable to reduce significantly the adhesion of cultured normal LFA-1+ T cells to 24 h with TNF-alpha-stimulated endothelium with antibodies that block LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions, and lectin adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 appeared not to be implicated, other as yet undefined cell surface structures are likely to participate in T cell/EC interactions.  相似文献   

17.
CD8(+) tumor-infiltrating lymphocytes (TIL) are defective in cytolysis due to tumor-induced inhibition of proximal TCR-mediated signaling, a defect that is relieved upon purification and brief culture. We show in this study that frequency of conjugation in vitro of nonlytic TIL with tumor cells is low in comparison with their lytic counterparts, and the strength of interaction and duration of conjugation are also reduced. Previous reports show that p56(lck) activation is required for TCR-initiated LFA-1 avidity up-regulation, raising the question: is low LFA-1 avidity the basis of reduced TIL conjugation frequency? When stimulated with phorbol ester, nonlytic TIL bind purified ICAM-1 equivalently as lytic TIL, suggesting that LFA-1 can be activated if proximal TCR signaling is bypassed. However, when treated with phorbol ester, the conjugation frequency of nonlytic TIL does not increase. CD2 and CD8 also mediate T cell adhesion to cognate target cells and are both expressed at lower levels in nonlytic TIL in addition to being excluded from the immune synapse formed upon conjugation. Collectively, these results imply that adhesion defects in nonlytic TIL result from a combination of decreased cell surface levels of adhesion molecules, deficient LFA-1 activation, and the failure to recruit essential adhesion receptors to the membrane contact site formed with cognate target cells.  相似文献   

18.
Hauss P  Selz F  Fischer A 《Cytometry》1996,23(1):39-47
We have previously shown by means of fluorescence microscopy that antigen-independent adhesion of resting CD4 T cells to EBV-transformed B cells can be down-regulated by ligand interaction with CD4. In this study we used flow cytometry analysis of conjugate formation to confirm these findings. No conjugates between resting CD4 + T cells and B cells were initially detected in the latter method, because flow velocity in the flow chamber induces hydrodynamic elongation forces which disrupt low-affinity conjugates. After forcing cell conjugation by low-speed centrifugation of T and B cells, conjugates became detectable although in smaller numbers than in fluorescence microscopy. "Forced" cell conjugates had similar characteristics to their unforced counterparts, i.e., 37 degrees C temperature dependency, mediation by LFA-1/ICAM-1 and CD2/LFA-3 pathways, and transiency. The latter characteristic was at least partly mediated by CD4/HLA class II interaction, since adhesion of CD4 + T cells to HLA class II-B cells was more stable. In addition, adhesion was inhibited by anti-CD4 antibodies but not by an HLA DR-derived peptide known to inhibit unforced CD4 + T cell adhesion to B cells. This blocking effect was partially reproduced by reducing the centrifugation time prior to the adhesion assay. These results show that a) CD4-mediated down-regulation of T cell adhesion can be observed by means of two different techniques, and b) analysis of cell-cell adhesion after increasing centrifugation times (and possibly speeds) is a simple way of measuring adhesion forces semiquantitatively.  相似文献   

19.
Functional studies demonstrate that T cell activation often requires not only occupancy of the TCR but costimulatory interactions of other molecules, which remain largely undefined. We have tested the hypothesis that LFA-1 interaction with its ligand intercellular adhesion molecule 1 (CD54) (ICAM-1) is such a costimulatory interaction in a model system using biochemically purified ICAM-1 and TCR cross-linking by anti-CD3 mAb OKT3 immobilized on plastic. Resting T cells do not respond to OKT3 mAb immobilized on plastic. However ICAM-1 deposited on plastic together with the nonmitogenic immobilized OKT3 results in a potent activating stimulus. This costimulation cannot be readily accounted for by ICAM-1-mediated adhesion but is consistent with a role in signaling, which is observed in ICAM-1-mediated augmentation of activation induced by PMA/ionomycin. The ability of ICAM-1 to costimulate with immobilized CD3 contrasts with minimal costimulatory activity of cytokines IL-1 beta, IL-2, and IL-6. The proliferative response to co-immobilized OKT3 and ICAM-1 is dependent on the IL-2R, which is induced only in the presence of both OKT3 and ICAM-1. The present data demonstrate that LFA-1/ICAM-1 interaction is a potent costimulus for TCR-mediated activation; this observation, interpreted in light of previous reports, suggests that LFA-1/ICAM-1 is of major physiologic importance as a costimulatory signal.  相似文献   

20.
Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号