首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyl-L-carnitine (ALC) is known to affect several aspects of neuronal activity. To evaluate the neuroendocrine actions of this compound, several endocrinological parameters were followed in ALC-treated and control animals during recovery from dark-induced anestrus. In treated animals, serum luteinizing hormone (LH) and prolactin levels were higher than those of controls during the proestrous and estrous phases of the cycle, and serum estradiol levels were higher during estrus. No significant changes were observed in serum levels of follicle-stimulating hormone and progesterone. Uterine weight was increased in ALC-treated rats during proestrus and estrus, but not in diestrus. The basal release of gonadotropin-releasing hormone (GnRH) from perifused hypothalamic slices of ALC-treated animals was elevated at proestrus and diestrus, and GnRH release elicited by high K+ was higher during all three phases of the cycle. The basal release of LH from perifused pituitaries of treated animals was elevated in diestrus, and the LH response to GnRH was higher in estrus and diestrus I. Depolarization with K+ caused increased LH secretion during proestrus and estrus in treated animals. In contrast to these effects of ALC treatment in vivo, no direct effects of ALC were observed during short- or long-term treatment of cultured pituitary cells. These results indicate that ALC treatment influences hypothalamo-pituitary function in a cycle stage-dependent manner, and increases the secretory activity of gonadotrophs and lactotrophs. Since no effects of ALC on basal and agonist-induced secretory responses of gonadotrophs were observed in vitro, it is probable that its effects on gonadotropin release are related to enhancement of GnRH neuronal function in the hypothalamus.  相似文献   

2.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

3.
This study focused on expression of estradiol receptors (ER) during the estrous cycle. Labeling for ERalpha or beta antigens and luteinizing hormone (LH) or follicle-stimulating hormone (FSH) beta-subunits was done on freshly dispersed pituitary cells. The lowest expression of ERalpha and beta was seen in estrus (23% and 12%, respectively). Expression increased to 42-54% of pituitary cells by diestrus. In males, cells with ERalpha or beta were 37% or 20% of the population, respectively. ERalpha or beta and gonadotropin antigens were in 6-9% of pituitary cells from male rats. Early in the cycle (estrus and metestrus), less than 5% of pituitary cells expressed ERalpha or beta with gonadotropins. These values doubled to reach a peak of 10% during proestrus (just before ovulation). These data show that a rise in expression of both ERalpha and ERbeta is a part of preovulatory differentiation of pituitary gonadotropes.(J Histochem Cytochem 49:665-666, 2001)  相似文献   

4.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

5.
The gonadotropin-releasing hormone (GnRH) binding capacity in ovaries and pituitaries of normal cycling rats at different stages of the estrous cycle and in ovaries of persistent-estrus rats was measured using radioligand-receptor assay (RRA). Persistent estrus was induced either by neonatal administration of testosterone propionate (1.25 mg s.c.) on the second day of life or by a hypothalamic suprachiasmatic frontal cut made with Halász' knife. All animals were killed during the critical period (1400-1600 h), and GnRH receptor was assayed. GnRH receptor levels in both ovaries and pituitaries changed during the estrous cycle. The total number of ovarian GnRH binding sites was significantly higher in proestrus than in diestrus 1, the stage in which the lowest level was found. When binding sites were expressed in fmol/mg ovary, the highest level was observed in diestrus 2; however, no changes were observed during the estrous cycle when GnRH binding sites were expressed as fmol/mg protein. Changes noted were very similar to those demonstrated in pituitary GnRH receptors in our present and previous experiments. Higher levels of pituitary binding sites were found in diestrus 2 and proestrus than in estrus and diestrus 1. The changes in the GnRH receptor levels were more striking in the pituitary than in the ovaries. It appears that the total number of ovarian GnRH binding sites was not altered in either of the two persistent-estrus groups, but that their concentration was significantly higher (expressed in fmol/mg ovary or fmol/mg protein) than on any day during the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study was designed to learn more about the changes in expression of rat anterior pituitary (AP) leptin during the estrous cycle. QRT-PCR assays of cycling rat AP leptin mRNA showed 2-fold increases from metestrus to diestrus followed by an 86% decrease on the morning of proestrus. Percentages of leptin cells increased in proestrus and pregnancy to 55-60% of AP cells. Dual labeling for leptin proteins and growth hormone (GH) or gonadotropins showed that the rise in leptin protein-bearing cells from diestrus to proestrus was mainly in GH cells. Only 10-20% of leptin cells in male or cycling female rats coexpress gonadotropins. In contrast, 50-73% of leptin cells from pregnant or lactating females coexpress gonadotropins and only 19% coexpress GH, indicating plasticity in the distribution of leptin. Leptin cells expressed GnRH receptors, and estrogen and GnRH together increased the coexpression of leptin mRNA and gonadotropins. GnRH increased cellular leptin proteins three to four times and mRNA 9.8 times in proestrous rats and stimulated leptin secretion in cultures from diestrous, proestrous, and pregnant rats. These regulatory influences, and the high expression of AP leptin during proestrus and pregnancy, suggest a supportive role for leptin during key events involved with reproduction.  相似文献   

7.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

8.
Experiments were undertaken to define the role of gonadotropins in the release of norepinephrine and the relationship with beta-receptors of the ovary. Rat ovaries were removed at different stages of the estrous cycle and incubated in [3H]norepinephrine. Subsequently, ovaries were electrically stimulated and the release of [3H]norepinephrine was recorded. There were no changes in the norepinephrine content during the estrous cycle. The ovary exhibited cyclical variation in norepinephrine-induced release during the estrous cycle. The lowest release of norepinephrine was found during diestrus; there was an increase during proestrus and estrus followed by a decline during metestrus. The release of norepinephrine changed in the opposite way to the beta-receptor number, suggesting a process involving down-regulation between norepinephrine release and beta-receptors of the ovary. Norepinephrine released from the ovary was locally regulated by gonadotropins. The presence of FSH in the superfusion medium stimulated the norepinephrine-induced release from the ovaries of rats in diestrus (by 20%) and estrus (by 40%), but no effect was found during proestrus. In addition, the presence of hCG stimulated (by 40%) norepinephrine-induced release during proestrus, but no changes were apparent during the other stages of the estrous cycle. These results suggest that the local action of gonadotropins on nerve terminals of the ovary might be one of the factors governing the changes in norepinephrine release through the estrous cycle. The changes in the norepinephrine released to the synaptic cleft might exert down-regulation on the beta-adrenergic receptor content of the ovary and in this way control the ovarian steroid secretory activity.  相似文献   

9.
Serum inhibin and FSH and FSH beta subunit mRNA levels were measured at 3h intervals throughout the 4 day estrous cycle in female rats and hourly between 1000 and 2400 h of proestrus. On proestrus, serum inhibin concentrations fell during the late morning-early afternoon, then increased transiently during the late afternoon gonadotropin surges. Inhibin levels decreased during the late evening of proestrus, coincident with the FSH surge-related rise in FSH beta mRNA levels. Serum inhibin remained relatively stable during estrus and early metestrus, but rose during the late evening of metestrus and remained elevated until early diestrus. FSH beta mRNA levels were elevated on late estrus and early metestrus and declined during the evening of metestrus as serum inhibin levels increased. These data show that concentrations of serum inhibin change during the estrous cycle and that a general inverse relationship exists between serum inhibin and FSH levels and FSH beta mRNA concentrations in the pituitary. This suggests that inhibin may inhibit FSH beta gene expression and FSH secretion during the 4 day cycle in female rats.  相似文献   

10.
We investigated whether neural afferents to the medial basal hypothalamus play an acute role in the estrous phase of FSH release in the 4-day cyclic rat. A cannula was inserted into the right atrium of the heart under brief ether anesthesia during the early afternoon of proestrus for subsequent blood collections and injection of LHRH. In some of the rats, the medial basal hypothalamus was surgically isolated from the rest of the brain with a small knife under brief ether anesthesia between 2000 h and 2130 h of proestrus. Control groups consisted of naive rats which were not treated during the night of proestrus and sham-operated animals in which the knife was lowered to the corpus callosum between 2000 h and 2130 h or proestrus. Rats were bled at 2200 h of proestrus and at 0200 h, 0600 h and 1000 h of estrus for radioimmunoassay of plasma FSH and LH. The plasma FSH levels in all 3 groups between 2200 h of proestrus and 1000 h of estrus were elevated above levels observed in other cannulated rats bled to the onset of the proestrous phase of FSH release at 1400 h of proestrus. There were no statistically significant differences in plasma FSH or LH concentrations at any of the time periods between the 3 groups of serially bled rats. The deafferentation procedure did not appear to impair the pituitary gland's ability to secret gonadotrophins as injection of 50 ng of LHRH after the bleeding at 1000 h of estrus caused substantial elevations in plasma FSH and LH concentrations which were not different between the 3 groups. The results suggest that neural afferents to the medial basal hypothalamus play no acute role in the estrous phase of FSH release in the cyclic rat.  相似文献   

11.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ghrelin, a 28-amino acid acylated peptide produced mainly by the stomach, has various functions. Recent studies focus on its endocrine and/or paracrine effects in the regulation of the hypothalamo-pituitary-gonadal axis, that is, the role in reproduction. Previous data have shown that variation of ghrelin depended on the phases of estrous cycle in adult rat ovary. This study was to investigate the expression of ghrelin in the cyclic porcine hypothalamo-pituitary-ovary axis and stomach by semiquantitative RT-PCR and immunohistochemical method. Twenty virginal gilts were classified into four groups as the proestrus, estrus, diestrus1 and diestrus2. Results showed that expression of ghrelin mRNA in the hypothalamus changed with the estrous cycle, i.e., with the highest level in the proestrus and the lowest in the estrus. In the pituitary, the pattern of ghrelin mRNA expression during estrous cycle markedly decreased in the estrus and diestrus1. In the ovary, ghrelin mRNA exhibited with the highest level in the diestrus2 and the lowest in the proestrus, which was different from those in the hypothalamus and pituitary. In the stomach, the expression of ghrelin mRNA had the same tendency as that of the porcine ovary. In immunohistochemical experiment, ghrelin immunoreactive cells were predominantly located in the luteal compartment and growing follicles in the luteal phase of ovary. However, only few ghrelin immunoreactive cells were found in the proestrus ovary. In gastric mucosa, ghrelin immunoreactive cells were detected in the estrus, diestrus1 and diestrus2, but few ghrelin positive cells were seen in the proestrus. Results suggest that ghrelin may play a major role in the endocrine network that integrates energy balance and reproduction.  相似文献   

13.
Ovine prolactin (o-PRL) binding to mammary gland membranes was studied during the estrous cycle in the rat. Groups of rats were decapitated throughout the 4-day estrous cycle at 10 h00 on the days of diestrus I, diestrus II and estrus and at 10 h00, 12 h00, 16 h00 during the day of proestrus. Daily vaginal smears were taken to determine the stage of the estrous cycle which was also controlled by PRL and LH serum levels. Prolactin receptors were quantified in the 100 000 g pellet. For one Scatchard analysis, mammary gland membranes from 5 animals were pooled. Results given are the mean of 4 or 5 pools. Results obtained showed that the apparent affinity constant (KA) remained unchanged during the days of diestrus II and at all the times studied of proestrus and showed a slight but significant decrease on the days of estrus and diestrus I (or metestrus). The binding capacity did not vary from the day of diestrus II to the proestrus 16h00 (11.3 +/- 2.8 fmoles/mg protein) but sharply increased on the day of estrus (190.4 +/- 35.9 fmoles/mg protein). Binding capacity remained elevated on the day of diestrus I. This increase of PRL receptors on the day of estrous would appear to be an important step in preparing mammary gland for pregnancy and lactation.  相似文献   

14.
These experiments explored the mechanism underlying FSH hypersecretion on estrous afternoon in rats injected with RU486 (RU) on proestrus. Four-day cyclic rats were injected with RU at 12:00 h on proestrus (1 or 4 mg/0.2 ml oil; s.c.), and its effects on LH and FSH secretion at 18:30 h on estrus were compared with those of antiprogestagens ZK299 (ZK) (1 or 4 mg/0.2 ml oil; s.c.) and Org31806 (OR) (2 or 8 mg/0.2 ml oil; s.c.). Additionally, rats treated with RU or nembutal (PB) (60 mg/kg; i.p. at 13:00 h on proestrus) were injected with an LHRH antagonist (LHRHa) at 10:00 h on estrus (1 mg/0.2 ml saline; s.c.) or progesterone (P) (7.7, 15.5 or 30.9 mg/0.2 ml oil; s.c.) on proestrus at 10:00 h in RU-injected rats and at 14:00 h in PB-injected rats. Animals were killed by decapitation at 18:30 h on estrus and serum LH and FSH concentrations were determined. Rats treated with 1 or 4 mg of RU or Org or 4 mg of ZK recorded increased serum FSH on estrous afternoon, while 1 mg ZK had no effect. PB increased mainly serum LH levels and, to a lesser extent, FSH levels. P decreased serum FSH concentrations in both RU- and PB-injected rats. LHRHa reversed the effects of PB on FSH secretions, but reduced FSH hypersecretion induced by RU only. These results are interpreted to mean that, in the absence of proestrous afternoon P-inhibitory action of the neural stimulus controlling LHRH release, FSH secretion on estrous afternoon involves two components: one is LHRH dependent while, in contrast to LH secretion, the other is LHRH independent, and only expressed in a low estrogen background.  相似文献   

15.
LH and FSH release during the afternoon of diestrus 1 on the one hand, and the rate of follicular growth on the morning of diestrus 1 or diestrus 2, on the other hand, were studied in 4-day cyclic female rats after injection of estradiol benzoate (10 microgram, s.c.) on the morning of estrus. LH and FSH release was observed between 15.00 and 19.00 h during diestrus 1, but did not occur after an injection of pentobarbital (30 mg/kg, i.p.) in diestrus 1 at 13.30 h. No luteinization resulted from an injection of estrogen. Slowed follicular growth was observed on the morning of either diestrus 1 or diestrus 2. These results suggest the existence of a "critical period" for LH and FSH release in diestrus 1 during the afternoon. They indicate that the ovarian response to the endogenous release of gonadotropins is dependent upon the state of development of the ovarian follicles.  相似文献   

16.
Ovariectomy of adult female rats (200-230g) resulted in an increase in beta-adrenergic receptors in the cerebral cortex, hypothalamus and anterior pituitary. The anterior pituitary had the largest overall increase as well as the most rapid increase in beta-adrenergic receptor density of the tissues examined. The increase in hypothalamic or cerebral cortical beta-adrenergic receptors became apparent only long after ovariectomy (7-14 days). Fourteen days after ovariectomy, the density of beta-adrenergic receptors was 79%, 40%, and 24% in excess of control values in crude membranes prepared from anterior pituitary, hypothalamus and cerebral cortex, respectively. Over the same interval, the plasma concentration of luteinizing hormone (LH) increased 28-fold, while the concentration of follicle-stimulating hormone (FSH) rose 5-fold compared to control levels. Estradiol replacement (20 micrograms/kg/day) in these animals for four days before sacrifice concomitantly reduced plasma levels of the gonadotropins as well as the density of beta-adrenergic receptors in both the anterior pituitary and the hypothalamus. Long-term steroid replacement during the fifth and sixth week after ovariectomy, with implants of estradiol and progesterone which released the steroids in approximately physiological concentrations, significantly reduced beta-adrenergic density in anterior pituitary, but not in the hypothalamic membranes. This treatment significantly reduced plasma LH, but not FSH. Beta-adrenergic receptor density was also found to fluctuate significantly during the 4-day estrous cycle. The highest values were found on proestrus, and the lowest on diestrus 1. These studies indicate that changes in plasma concentrations of gonadal steroids (e.g. during the estrous cycle) influence the density of beta-adrenergic receptors in tissues involved in the control and release of anterior pituitary gonadotropins.  相似文献   

17.
This paper further substantiates the physiological role of beta-endorphin (beta-END) in the control of the cyclic LH secretion and provides new data on the interactions between 17 beta-estradiol (17 beta-E2) and beta-END at both the hypothalamic and pituitary levels. At the hypothalamic level, during the estrous cycle in rats, beta-END concentrations were highest on diestrus I in the arcuate nucleus, median preoptic area and median eminence and lowest at the time of the preovulatory 17 beta-E2 surge on proestrus, before the subsequent preovulatory hypothalamic GnRH and plasma LH surges. Data obtained in ovariectomized 17 beta-E2-treated ewes support the direct involvement of 17 beta-E2 in changes in beta-END and GnRH concentrations in these hypothalamic areas. At the anterior pituitary level, in vitro results obtained using anterior pituitaries from the proestrus morning cycling female rat have shown that 17 beta-E2 strongly suppresses beta-END secretion and that GnRH stimulates the release of beta-END. Furthermore, marked fluctuations were observed for plasma beta-END throughout the menstrual cycle in the woman. Low beta-END concentrations were observed in the period preceding the LH preovulatory surge. Taken together, these results show that: (1) decreases in hypothalamic beta-END concentrations, which are controlled at least by circulating levels of 17 beta-E2, modulate GnRH synthesis and/or release and contribute to the mechanisms which initiate the LH surge; (2) anterior pituitary beta-END might be involved in the mechanisms which terminate the LH surge.  相似文献   

18.
These studies examined whether the decrease in pituitary responsiveness to gonadotropin-releasing hormone (GnRH) observed during lactation in the rat results from a change in pituitary GnRH receptors. GnRH binding capacity was determined by saturation analysis using D-Ala6 as both ligand and tracer. During the estrous cycle, the number of GnRH binding sites increased from 199 +/- 38 fmol/mg protein on estrus to 527 +/- 31 fmol/mg protein on the morning of proestrus, whereas there was no change in receptor affinity (Ka, 6-10 X 10(9) M-1), During lactation, females nursing 8 pups on Days 5 or 10 postpartum had 50% fewer GnRH receptors (109-120 fmol/mg protein) than observed during estrus or diestrus 1 (199-242 fmol/mg protein) although receptor affinity was similar among all the groups. No deficits in pituitary GnRH receptors were observed in females nursing 2 pups on Day 10 postpartum. Removal of the 8-pup suckling stimulus for 24 or 48 h resulted in a dramatic increase in GnRH receptor capacity by 24 h from 120 +/- 16 to 355 +/- 39 fmol/mg protein. The rise in GnRH receptors after pup removal was accompanied by an increase in serum luteinizing hormone (LH) and estradiol concentrations. To assess the role of ovarian steroids in determining GnRH receptor capacity during lactation, females were ovariectomized (OVX) on Day 2 postpartum. Suckling of a large litter (8 pups) completely blocked the postcastration rise in serum LH and in pituitary GnRH receptors on Day 10 postpartum (OVX+ 8, 77 +/- 12 fmol/mg protein; OVX+ 0, 442 +/- 38 fmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The objectives were to determine the effects of (i) time during the first FSH increase of the estrous cycle (time-course study) and (ii) exogenous steroid treatment (steroid feedback study) on the relationship between circulating serum gonadotropins, and the proportions of pituitary cells immunoreactive for gonadotropins and steroid receptors during the estrous cycle in heifers. Pituitaries were collected from heifers (n=40) slaughtered at 13h (n=8), 30h (n=24) and 66h (n=8) after estrous onset, corresponding to before, during and after the first FSH increase of the estrous cycle. Heifers slaughtered during the FSH increase (at 30h) either received no treatment (n=8), or were treated (n=16) with estradiol benzoate and/or progesterone before slaughter. During the time-course study, the proportion of pituitary cells immunoreactive for FSH increased (P<0.05) during the first transient FSH increase reflecting serum concentrations. The proportion of pituitary cells immunoreactive for LH was unaltered, a reflection of serum LH concentrations. The proportion of estrogen receptors (ER)-alpha, but not ER-beta, was decreased (P<0.05) at 30h compared with at either 13 or 66h. During the steroid feedback study, exogenous progesterone with or without estradiol suppressed (P<0.05) the proportions of pituitary cells immunoreactive for gonadotropins, serum FSH concentrations and LH pulse frequency. Steroid treatment did not alter the proportion of pituitary cells positive for estrogen receptors (alpha and beta). While progesterone receptors (PR) were not detected in the anterior pituitary by immunohistochemistry during the early estrous cycle or in response to steroid treatment, quantitative real-time PCR revealed that mRNA for progesterone receptors was expressed at very low levels. The expression of pituitary PR mRNA was decreased (P<0.05) at 30 and 66h compared with 13h, and was suppressed (P<0.05) following steroid treatments. Alterations in pituitary steroid receptors are implicated in the differential regulation of gonadotropin secretion during the first transient FSH rise, but not in response to exogenous steroids. The time-course study and steroid feedback responses support the hypothesis that LH pulse frequency is tightly linked to regulation of GnRH pulse frequency. Serum FSH is regulated by its own synthesis, as reflected by pituitary FSH content and perhaps by alterations in pituitary sensitivity to circulating steroids by changes in steroid receptor content.  相似文献   

20.
The purpose of these experiments was to investigate the mechanism of the anovulatory action of antiprogesterone RU486 (RU486) in rats by studying its effects on follicular growth, secretion of gonadotropins and ovarian steroids, and ovulation. Rats with 4-day estrous cycles received injections (s.c.) of either 0.2 ml oil or 0.1, 1, or 5 mg of RU486 at 0800 and 1600 h on metestrus, diestrus, and proestrus. At the same times, they were bled by jugular venipuncture to determine serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17 beta-estradiol (E), and progesterone (P). On the morning of the day after proestrus, ovulation and histological features of the ovary were recorded. Rats from each group were killed on each day of ovarian cycle to assess follicular development. Rats treated similarly were decapitated at the time of the ovulatory LH surge and blood was collected to measure LH. The serum levels of LH increased and those of FSH decreased during diestrus in rats treated with RU486. Neither E nor P levels differed among the groups. Treatment with RU486 caused both a blockade of the ovulation and an increase in ovarian weight in a dose-dependent manner. At the time of the autopsy (the expected day of ovulation), rats treated with 1 mg RU486 had ovaries presenting both normal and post-ovulatory follicles and unruptured luteinized follicles. Rats treated with 5 mg RU486 presented post-ovulatory follicles without signs of luteinization. The number of follicles undergoing atresia increased in rats treated with RU486. Rats treated with 5 mg RU486 exhibited a significant decrease in ovulatory LH release. The mechanism by which RU486 produces the ovulatory impairment in rats seems to be dual: first, by inducing inadequate follicular development at the time of the LH surge and second, by reducing the amount of ovulatory LH released. The physiological events-decreased basal FSH secretion and follicular atresia-that result from use of RU486 cannot be elucidated from these experiments and should be investigated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号