首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Li X  Su J  Lei Z  Zhao Y  Jin M  Fang R  Zheng L  Jiao Y 《Peptides》2012,36(2):176-185
Since its discovery, gonadotropin-inhibitory hormone (GnIH) has appeared to act as a key neuropeptide in the control of vertebrate reproduction. GnIH acts via the novel G protein-coupled receptor 147 (GPR147) to inhibit gonadotropin release and synthesis. To determine the physiological functions of GnIH in the pig, a study was conducted to clone and sequence the cDNA of the GnIH precursor and GPR147. Our results demonstrated that the cloned pig GnIH precursor cDNA encoded three LPXRF and that its receptor possessed typical transmembrane features. Subsequently, tissue expression studies revealed that GnIH was mainly expressed in the brain, corresponding largely with the tissue expression patterns of GPR147 in the pig. The expression patterns in the reproductive axis of the female pig across the estrous cycle were also systemically investigated. The hypothalamic levels of both GnIH and its receptor mRNA were lowest in estrus and peaked in the proestrus and diestrus phases. The highest pituitary GnIH mRNA level was detected in the metestrus, and its receptor displayed a somewhat similar pattern of expression to that of the ligand. However, the expression patterns of GnIH and GPR147 were negatively correlated in the ovary. Immunolocalization in the ovary during the estrous cycle revealed that the immunoreactivities of GnIH and GPR147 were mainly localized in the granulosa and theca cells of the antral follicles during proestrus and estrus and in the luteal cells during metestrus and diestrus. Taken together, this research provided molecular and morphological data for further study of GnIH in the pig.  相似文献   

2.
3.
The effects of thymulin and GnRH on FSH and LH release were studied in suspension cultures of anterior pituitary cells from female adult rats sacrificed on each day of the estrous cycle. The spontaneous release of gonadotropins by pituitaries, as well as their response to GnRH or thymulin addition, fluctuated during the estrous cycle. Adding thymulin to pituitary cells from rats in diestrus 1 increased the concentration of FSH; while in cells from rats in estrus, FSH level decreased. Thymulin had a stimulatory effect on the basal concentration of LH during most days of the estrous cycle. Adding GnRH increased FSH release in cells from rats in diestrus 1, diestrus 2, or proestrus, and resulted in higher LH levels in cells obtained from rats in all days of the estrous cycle. Compared to the GnRH treatment, the simultaneous addition of thymulin and GnRH to cells from rats in diestrus 1, diestrus 2, or proestrus resulted in lower FSH concentrations. Similar results were observed in the LH release by cells from rats in diestrus 1, while in cells from rats in proestrus or estrus, LH concentrations increased. A directly proportional relation between progesterone serum levels and the effects of thymulin on FSH release was observed. These data suggest that thymulin plays a dual role in the release of gonadotropins, and that its effects depend on the hormonal status of the donor's pituitary.  相似文献   

4.
5.
Serum inhibin and FSH and FSH beta subunit mRNA levels were measured at 3h intervals throughout the 4 day estrous cycle in female rats and hourly between 1000 and 2400 h of proestrus. On proestrus, serum inhibin concentrations fell during the late morning-early afternoon, then increased transiently during the late afternoon gonadotropin surges. Inhibin levels decreased during the late evening of proestrus, coincident with the FSH surge-related rise in FSH beta mRNA levels. Serum inhibin remained relatively stable during estrus and early metestrus, but rose during the late evening of metestrus and remained elevated until early diestrus. FSH beta mRNA levels were elevated on late estrus and early metestrus and declined during the evening of metestrus as serum inhibin levels increased. These data show that concentrations of serum inhibin change during the estrous cycle and that a general inverse relationship exists between serum inhibin and FSH levels and FSH beta mRNA concentrations in the pituitary. This suggests that inhibin may inhibit FSH beta gene expression and FSH secretion during the 4 day cycle in female rats.  相似文献   

6.
大鼠发情期和间情期下丘脑ghrelin mRNA的表达   总被引:1,自引:0,他引:1  
为探索下丘脑ghrelin mRNA及GnRH mRNA在大鼠(Rattus norregicus)发情期和间情期的表达特点,通过外部观察和阴道涂片相结合的方法确定发情期和间情期,将12只未经产SD雌性大鼠分为2组,即发情期组和间情期组,每组6只。取动物下丘脑,用实时荧光RT-PCR方法检测ghrelin mRNA和GnRH mRNA的表达丰度。结果表明,间情期组大鼠下丘脑ghrelin mRNA的表达丰度显著高于发情期组(P<0.01);间情期组大鼠下丘脑GnRH mRNA的表达丰度显著低于发情期组(P<0.01)。研究发现,下丘脑ghrelin mRNA和GnRH mRNA在发情期与间情期具不同的表达模式,提示ghrelin可能在下丘脑水平上对GnRH mRNA的表达具下调作用。  相似文献   

7.
The gonadotropin-releasing hormone (GnRH) binding capacity in ovaries and pituitaries of normal cycling rats at different stages of the estrous cycle and in ovaries of persistent-estrus rats was measured using radioligand-receptor assay (RRA). Persistent estrus was induced either by neonatal administration of testosterone propionate (1.25 mg s.c.) on the second day of life or by a hypothalamic suprachiasmatic frontal cut made with Halász' knife. All animals were killed during the critical period (1400-1600 h), and GnRH receptor was assayed. GnRH receptor levels in both ovaries and pituitaries changed during the estrous cycle. The total number of ovarian GnRH binding sites was significantly higher in proestrus than in diestrus 1, the stage in which the lowest level was found. When binding sites were expressed in fmol/mg ovary, the highest level was observed in diestrus 2; however, no changes were observed during the estrous cycle when GnRH binding sites were expressed as fmol/mg protein. Changes noted were very similar to those demonstrated in pituitary GnRH receptors in our present and previous experiments. Higher levels of pituitary binding sites were found in diestrus 2 and proestrus than in estrus and diestrus 1. The changes in the GnRH receptor levels were more striking in the pituitary than in the ovaries. It appears that the total number of ovarian GnRH binding sites was not altered in either of the two persistent-estrus groups, but that their concentration was significantly higher (expressed in fmol/mg ovary or fmol/mg protein) than on any day during the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aromatic hydrocarbon receptor (AHR) and AHR nuclear translocator protein (ARNT) mediate the toxic effects of a wide variety of halogenated and polycyclic aromatic hydrocarbons. While it can be assumed that AHR has an endogenous function, its role in reproduction is currently undefined. The present study seeks to examine the regulation of AHR and ARNT mRNAs in liver and ovarian tissues across the rat estrous cycle. Message for hepatic AHR was increased significantly on the morning of proestrus, and decreased dramatically by the evening of proestrus; while hepatic ARNT mRNA was significantly decreased between diestrus and the morning of proestrus, and between the evening of proestrus and the morning of estrus. Ovarian AHR mRNA was unchanged from diestrus to proestrus, and was decreased on the evening of proestrus. Changes in the expression of ARNT mRNA mirrored changes in the liver. To assess interaction between the AHR- and estrogen-receptor (ER)-signaling pathways and to test the hypothesis that estrogen regulates AHR mRNA, 25-day-old female rats were injected with either 17beta-estradiol, the ER antagonist ICI 182 780, or with vehicle, and hepatic AHR mRNA was measured. Treatment with estrogen or the estrogen antagonist did not alter the abundance of AHR mRNA in the liver. These data suggest that while estrogen may not be the key regulator of AHR mRNA expression, a factor associated with the rat reproductive cycle may be important in regulating the expression of both the AHR and ARNT genes in the ovary and liver.  相似文献   

9.
The aim of the present study was to investigate differences in the expression of mRNAs for ERalpha, ERbeta and PR in the sow uterus at different stages of the estrous cycle as well as in inseminated sows at estrus and during early pregnancy by use of solution hybridization and in relation to plasma levels of estradiol and progesterone. Uterine samples were collected at different stages of the estrous cycle and after insemination/early pregnancy. In the endometrium, the expression of ERalpha mRNA and PR mRNA was similar for cyclic and early pregnant groups. Both were highest at early diestrus/70 h after ovulation and ERalpha mRNA was lowest at late diestrus/d 19 while PR mRNA was lowest at diestrus and late diestrus/d 11 and d 19. The expression of endometrial ERbeta was constantly low during the estrous cycle but higher expression was found in inseminated/early pregnant sows at estrus and 70 h after ovulation. In the myometrium, high expression of ERalpha mRNA and PR mRNA was observed at proestrus and estrus in cyclic sows and at estrus in newly inseminated sows. Higher expression of myometrial ERbeta mRNA was found in inseminated/early pregnant sows compared with cyclic sows, although significant only at estrus. In conclusion, the expression of mRNAs for ERalpha, ERbeta and PR in the sow uterus differed between endometrium and myometrium as well as with stages of the estrous cycle and early pregnancy. In addition to plasma steroid levels, the differences between cyclic and inseminated/early pregnant sows suggest that other factors, e.g. insemination and/or the presence of embryos, influence the expression of these steroid receptor mRNAs in the sow uterus.  相似文献   

10.
11.
Gonadotropin releasing hormone (GnRH) has now been suggested as an important intraovarian regulatory factor. Gonadotropin inhibitory hormone (GnIH) a hypothalamic dodecapeptide, acts opposite to GnRH. GnRH, GnIH and their receptors have been demonstrated in the gonads. In order to find out the physiological significance of these neuropeptides in the ovary, we aim to investigate changes in the abundance of GnRH I and GnIH in the ovary of mice during estrous cycle. The present study investigated the changes in GnRH I, GnRH I-receptor and RFRP-3 protein expression in the ovary of mice during estrous cycle by immunohistochemistry and immunoblot analysis. The immunoreactivity of GnRH I and its receptor and RFRP-3 were mainly localized in the granulosa cells of the healthy and antral follicles during proestrus and estrus and in the luteal cells during diestrus 1 and 2 phases. The relative abundance of immunoreactivity of GnRH I, GnRH I-receptor and RFRP-3 undergo significant variation during proestrus and thus may be responsible for selection of follicle for growth and atresia. A significant increase in the concentration of RFRP-3 during late diestrus 2 coincided with the decline in corpus luteum activity and initiation of follicular growth and selection. In general, immunolocalization of GnRH I, GnRH I-receptor and RFRP-3 were found in close vicinity suggesting functional interaction between these peptides. It is thus, hypothesized that interaction between GnRH I-RFRP-3 neuropeptides may be involved in the regulation of follicular development and atresia.  相似文献   

12.
基质金属蛋白酶(MMPs)家族的作用是降解所有细胞外基质,其活性受其特异性组织抑制因子(TIMPs)的抑制。细胞外基质成分的降解与重组在动物生殖生长过程中起重要作用,其变化可以通过MMPs和TIMPs两者表达水平的变化进行监测。大鼠虽然没有月经形成,但是在其子宫内膜也出现类似灵长类的生殖生物学变化。本文从MMPs和TIMPs两者的表达水平,对大鼠子宫内膜的这些变化进行了研究。于大鼠动情周期的不同时期,将其处死、取子宫制备酶粗提液和组织切片,采用酶谱法(zymoyranhn)和原位杂交方法研究动情周期大鼠子宫中MMP-2和-9的活性变化以及MMP-2、-9和TIMP-1、-2、-3mRNA的表达。并通过光密度扫描方法对酶谱结果进行半定量分析。所用杂交探针见Table1。酶谱结果显示:在动情周期大鼠子宫中只检测到67kDa的MMP-2活性,而没有检测到MMP-9的活性(Fig.1)。MMP-2的活性在动情前期最高,动情期和动情后期次之,间情期最低(Fig.2)。原位杂交结果显示:MMP-2、-9、TIMP-1、-2、-3mRNA主要在子宫内膜基底部的基质细胞中表达。MMP-2和-9mRNA在动情前期、动情期和动  相似文献   

13.
Acetyl-L-carnitine (ALC) is known to affect several aspects of neuronal activity. To evaluate the neuroendocrine actions of this compound, several endocrinological parameters were followed in ALC-treated and control animals during recovery from dark-induced anestrus. In treated animals, serum luteinizing hormone (LH) and prolactin levels were higher than those of controls during the proestrous and estrous phases of the cycle, and serum estradiol levels were higher during estrus. No significant changes were observed in serum levels of follicle-stimulating hormone and progesterone. Uterine weight was increased in ALC-treated rats during proestrus and estrus, but not in diestrus. The basal release of gonadotropin-releasing hormone (GnRH) from perifused hypothalamic slices of ALC-treated animals was elevated at proestrus and diestrus, and GnRH release elicited by high K+ was higher during all three phases of the cycle. The basal release of LH from perifused pituitaries of treated animals was elevated in diestrus, and the LH response to GnRH was higher in estrus and diestrus I. Depolarization with K+ caused increased LH secretion during proestrus and estrus in treated animals. In contrast to these effects of ALC treatment in vivo, no direct effects of ALC were observed during short- or long-term treatment of cultured pituitary cells. These results indicate that ALC treatment influences hypothalamo-pituitary function in a cycle stage-dependent manner, and increases the secretory activity of gonadotrophs and lactotrophs. Since no effects of ALC on basal and agonist-induced secretory responses of gonadotrophs were observed in vitro, it is probable that its effects on gonadotropin release are related to enhancement of GnRH neuronal function in the hypothalamus.  相似文献   

14.
The specific cellular localization of prostaglandin endoperoxide (PGH) synthase was studied throughout the rat estrous cycle. Animals were necropsied at 1300 h on each day of the 4-day cycle, and an additional group was necropsied at 2300 h on proestrus. Ovaries were removed and processed for cellular identification of PGH synthase by immunohistochemistry. At all stages of the cycle, intense immunostaining was observed in newly formed corpora lutea. Luteal cells were immunoreactive, but the connective tissue centrum was unstained. Interstitial tissue contained heavily labeled cells, whereas the germinal epithelium exhibited faint staining. During estrus, metestrus, and diestrus, thecal cells from preantral and antral follicles contained PGH synthase immunoreactivity, but granulosa cells were unstained. Faint staining of mural granulosa cells was observed first in 78% of preovulatory follicles (less than 400-microns diameter) in ovaries collected on the afternoon of proestrus. After the luteinizing hormone surge, 95% of the preovulatory follicles exhibited PGH synthase staining. The percentage of immunoreactive granulosa cells in these preovulatory follicles increased 4-fold in ovaries collected at 2300 h on proestrus. The presence of ovarian PGH synthase throughout the rat estrous cycle and the changes in cellular localization may reflect the potential role of PGs in follicular and luteal function.  相似文献   

15.
Met-Enkephalin content of the anterior hypothalamic-preoptic area, medial basal hypothalamus, anterior pituitary, intermediate and posterior pituitary was measured using a specific radioimmunoassay. Met-Enkephalin content of the anterior hypothalamic-preoptic area, medial basal hypothalamus and anterior pituitary was very high on the morning of proestrus but decreased on the afternoon of proestrus and on estrus. The content of met-Enkephalin was more variable in the anterior pituitary than in the anterior hypothalamic-preoptic area and medial basal hypothalamus during the estrous cycle. The results suggest that the met-Enkephalin may be involved in regulating the hypothalamo-hypophyseal function during estrous cycle in the rat.  相似文献   

16.
大鼠动情周期中生殖轴系微循环血量的变化   总被引:1,自引:0,他引:1  
吴素英  张珉 《生理学报》1990,42(5):509-513
本文采用放射性生物微球技术,对雌性大鼠动情周期中丘脑下部-垂体-卵巢轴系的微循环血量进行了测量。结果指出,周期各期丘脑下部和垂体的血流量无显著差异(p>0.05)。卵巢血流量在动情后期最大,动情期最小,两期血流量的差异显著(p<0.02)。子宮血流量以动情后期最大,间情期仍维持在较高水平,动情期最小。动情后期和间情期与动情期比较均有显著差异(分别为p<0.01和P<0.05)。输卵管血流量动情期最大,动情前期最小,两期血流量的差异也有显著性(p<0.05)。由此表明,卵巢、子宫和输卵管血流量有明显的周期性波动。血流量的多寡与其生理机能状态和性激素的变化有关。  相似文献   

17.
This study focused on expression of estradiol receptors (ER) during the estrous cycle. Labeling for ERalpha or beta antigens and luteinizing hormone (LH) or follicle-stimulating hormone (FSH) beta-subunits was done on freshly dispersed pituitary cells. The lowest expression of ERalpha and beta was seen in estrus (23% and 12%, respectively). Expression increased to 42-54% of pituitary cells by diestrus. In males, cells with ERalpha or beta were 37% or 20% of the population, respectively. ERalpha or beta and gonadotropin antigens were in 6-9% of pituitary cells from male rats. Early in the cycle (estrus and metestrus), less than 5% of pituitary cells expressed ERalpha or beta with gonadotropins. These values doubled to reach a peak of 10% during proestrus (just before ovulation). These data show that a rise in expression of both ERalpha and ERbeta is a part of preovulatory differentiation of pituitary gonadotropes.(J Histochem Cytochem 49:665-666, 2001)  相似文献   

18.
19.
l-Prolyl-l-leucyl-glycinamide is rapidly hydrolyzed by hypothalamic, hypophyseal and cortical homogenates from male or female rats. The peptidase activity is higher in the pituitary followed in decreasing order by the hypothalamus and the cerebral cortex. It is mostly localized in the supernatant fraction of a 100,000 g centrifugation and is inhibited by bacitracin.Tissues from female rats are half as active as those from male rats and show variations during the estrous cycle, with very low PLG metabolism at diestrus 1 in pituitary and hypothalamus. In contrast, the cerebral cortex at proestrus and estrus has significant lower hydrolyzing activity than at diestrus. No change of the peptidase activity is observed in tissues from ovariectomized animals after treatment with estrogen or progesterone.The results obtained suggest the existence of a correlation between peptidasic activity and melanotropin secretion.  相似文献   

20.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号