首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

2.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

3.
Our previous work has suggested that glucocorticoid pretreatment suppresses the enhanced responsiveness to GnRH seen in serum LH 12 h after castration. By contrast, serum FSH continues to show the castration-induced hypersensitivity to GnRH. Our attempts to replicate this LH suppression in static pituitary culture in vitro were not successful. This suggested to us the possibility that corticoids in vivo might be preventing castration-induced increases in pituitary GnRH receptor levels. We tested this at 24 h post-castration and, in fact, corticoids did not suppress the increase in GnRH receptors. In addition to the aforementioned effects of corticoids, we have seen that cortisol reverses the castration-induced drop in pituitary FSH content. It does this for 7 days post-castration, even though it no longer has an effect in suppressing serum LH. Thus, our accumulated data reveal that glucocorticoids have a differential effect on LH and FSH synthesis and secretion. Further studies are needed to clarify the site(s) of action of glucocorticoids in gonadotropin secretion and synthesis. Glucocorticoids may well prove to be a key in unlocking the mystery of the mechanism of differential control of regulation of LH and FSH.  相似文献   

4.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH.  相似文献   

5.
The purpose of this study was to determine the occurrence of and the regulatory mechanisms involved in priming of the pituitary to GnRH before the preovulatory LH surge in sheep. Experiment 1: Forty-two ewes had progestagen devices removed after 14 days and were assigned to luteal (Lut) or follicular (Foll) groups. Fifteen days later, blood sampling was initiated either immediately or 36 h after induced luteolysis in groups Lut and Foll, respectively. After 4 h, ewes were administered either saline (n = 5) or 250 ng (n = 8) or 10 microg (n = 8) of GnRH. Five ewes per treatment group were killed 1 h later, while remaining animals were blood sampled for a further 7 h. Experiment 2: Eighteen ewes were allocated to Lut and Foll groups (described above). Blood samples were collected from 2 h before GnRH (10 microg) treatment until 7 h after. Despite up-regulated GnRH-R mRNA levels in Foll ewes, pituitary content and plasma levels of LH and LHbeta mRNA levels were similar between groups. Mean FSHbeta mRNA and plasma FSH levels were elevated in Lut ewes but declined after GnRH treatment. Inversely, plasma estradiol and inhibin-A concentrations were higher in Foll ewes and declined after GnRH treatment. Fewer LH(+ve)/secretogranin II(-ve) (SgII(-ve)) granules were present in gonadotropes of Foll ewes, coincident with increased basal LH levels. Fewer smaller sized granules were present after GnRH treatment. In conclusion, there was no evidence of self-priming before onset of the preovulatory LH surge. Constitutive release of LH(+ve)/SgII(-ve) granules may maintain basal LH levels while smaller sized, presumably mature granules may be preferentially released after GnRH stimulation.  相似文献   

6.
Preantral follicles of cyclic hamsters were isolated on proestrus, estrus and diestrus I, incubated for 3 h in 1 ml TC-199 containing 1 microgram ovine luteinizing hormone (LH) (NIH-S22), and the concentrations of progesterone (P), androstenedione (A) and estradiol (E2) determined by radioimmunoassay. At 0900-1000 h on proestrus (pre-LH surge) preantral follicles produced 2.4 +/- 0.3 ng A/follicle per 3 h, less than 100 pg E2/follicle and less than 250 pg P/follicle. At the peak of the LH surge (1500-1600 h) preantral follicles produced 1.8 +/- 0.2 ng P and 1.9 +/- 0.1 A and less than 100 pg E2/follicle. After the LH surge (1900-2000 h proestrus and 0900-1000 h estrus) preantral follicles were unable to produce A and E2 but produced 4.0 +/- 1.0 and 5.0 +/- 1.1 ng P/follicle, respectively. By 1500-1600 h estrus, the follicles produced 8.1 +/- 3.1 ng P/follicle but synthesized A (1.6 +/- 0.2 ng/follicle) and E2 (362 +/- 98 pg/follicle). On diestrus 1 (0900-1000 h), the large preantral-early antral follicles produced 1.9 +/- 0.3 ng A, 2.4 +/- 0.4 ng E2 and 0.7 +/- 0.2 ng P/follicle. Thus, there was a shift in steroidogenesis by preantral follicles from A to P coincident with the LH surge; then, a shift from P to A to E2 after the LH surge. The LH/follicle-stimulating hormone (FSH) surges were blocked by administration of 6.5 mg phenobarbital (PB)/100 g BW at 1300 h proestrus. On Day 1 of delay (0900-1000 h) these follicles produced large quantities of A (2.2 +/- 0.2 ng/follicle) and small amounts of E2 (273 +/- 27 pg/follicle) but not P (less than 250 pg/follicle).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Serum inhibin and FSH and FSH beta subunit mRNA levels were measured at 3h intervals throughout the 4 day estrous cycle in female rats and hourly between 1000 and 2400 h of proestrus. On proestrus, serum inhibin concentrations fell during the late morning-early afternoon, then increased transiently during the late afternoon gonadotropin surges. Inhibin levels decreased during the late evening of proestrus, coincident with the FSH surge-related rise in FSH beta mRNA levels. Serum inhibin remained relatively stable during estrus and early metestrus, but rose during the late evening of metestrus and remained elevated until early diestrus. FSH beta mRNA levels were elevated on late estrus and early metestrus and declined during the evening of metestrus as serum inhibin levels increased. These data show that concentrations of serum inhibin change during the estrous cycle and that a general inverse relationship exists between serum inhibin and FSH levels and FSH beta mRNA concentrations in the pituitary. This suggests that inhibin may inhibit FSH beta gene expression and FSH secretion during the 4 day cycle in female rats.  相似文献   

8.
In this paper we present evidence that a single low dose of the natural synthetic gonadotropin-releasing hormone (GnRH), inhibits ovulation induced by LH in proestrous-hypophysectomized rats. Rats hypophysectomized by the parapharyngeal route in the morning of proestrus received an intravenous injection of 100 or 300 ng GnRH at 1400 h immediately followed by 1.0 microgram LH per 100 g bw. In control groups, either one or both hormones were replaced with 0.9% NaCl. Ovulation was assessed the following morning by counting the ova present in oviductal flushings. All the rats treated with LH alone ovulated, and the addition of GnRH reduced significantly the number of ovulating rats and the number of ova per ovulating rat. In other groups of rats hypophysectomized in the morning of proestrus and treated in the same way, ovarian or adrenal secretory rates of estradiol and/or progesterone were measured after cannulation of the corresponding vein, in the afternoon of proestrus. In these animals, GnRH failed to inhibit either the ovarian progesterone surge observed 2 h after LH administration, or the adrenal progesterone secretion. All hypophysectomized rats showed lower ovarian secretory rate of estradiol than intact rats; this rate was not affected by treatment with LH or LH plus GnRH. The systemic estradiol levels in plasma of hypophysectomized rats were distributed within a range of 20 pg/ml to 50 pg/ml. The number of rats whose levels were above 21 pg/ml on estrus day was significantly higher in rats receiving 300 ng GnRH as compared to those receiving 100 ng GnRH, reaching values that surpassed the concentration found in intact, untreated animals at the same time of estrus. This effect did not depend on LH administration.  相似文献   

9.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

10.
The effects of GnRH pulse amplitude, frequency, and treatment duration on pituitary alpha and LH beta subunit mRNA concentrations were examined in castrate-testosterone replaced male rats. Experimental groups received iv GnRH pulses (5, 25, or 125 ng) at 7.5-, 30-, or 120-min intervals for 8, 24, or 48 h. Saline pulses were given to control rats. Acute LH secretion was measured in blood drawn before and 20 min after the last GnRH pulse. In saline controls, alpha and LH beta mRNAs (150 +/- 14, 23 +/- 2 pg cDNA bound/100 micrograms pituitary DNA) fell to 129 +/- 14 and 18 +/- 2, respectively, after 48 h. In animals receiving GnRH pulses (7.5-min intervals), the 125-ng dose stimulated a slight increase (P less than 0.01) in alpha mRNA levels after 8 and 24 h and both LH subunit mRNAs were increased by the 25- and 125-ng doses after 48 h. The 30-min pulse interval injections (25- and 125-ng doses) increased LH beta mRNA levels after 8 h, but alpha mRNAs were not elevated until after 24 h. Maximum (3-fold) increases in alpha and LH beta mRNAs were seen in rats receiving 25-ng pulses every 30 min for 48 h. Using 120-min pulses, LH subunit mRNAs were not increased by any GnRH dose through 48 h. Acute LH release was not seen in rats receiving 5 ng GnRH pulses at any pulse interval.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

12.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Heterologous radioimmunoassays (RIA) for macaque LH and FSH were validated for the measurement of these hormones in the sooty mangabey and mangabey pituitary LH was characterized relative to rhesus monkey LH. Dilutions of a pituitary mangabey extract and a partially purified preparation of mangabey LH ran parallel to a rhesus monkey standard (LER 1909-2) in the ovine-ovine (o-o) LH assay but showed some deviation from parallelism in the rhesus monkey FSH assay. The LH potency of the mangabey extract and standard were six and 190 times more potent, respectively, than LER 1909-2 in the LH RIA. Mangabey LH was estimated to have a molecular weight of 40,000–42,000 daltons vs 35,000–38,000 daltons for rhesus LH on Sephadex G-100 chromatography. Plasma levels of radioimmunoreactive LH, FSH, and testosterone were assayed before and after a bolus administration of 25, 50, or 100 μg synthetic go-nadotropin releasing hormone (GnRH) to adult male mangabeys. A significant increase in serum levels of LH was seen within 30 min with levels more than fourfold higher than the basal level of LH after administration of 100 μg GnRH. However, no consistent increases in plasma FSH values were detected. The integrated mean LH response above preinjection levels following 25, 50, or 100 μg GnRH was dose related. Serum levels of testosterone were also elevated after administration of GnRH, but peak concentrations of testosterone lagged behind peak levels of LH by approximately 30 min. These studies indicate that the heterologous RIAs may be used for measuring gonadotropins in the mangabey and that the male mangabey is apparently more sensitive to GnRH than the rhesus monkey.  相似文献   

14.
The secretion of gonadotropins, the key reproductive hormones in vertebrates, is controlled from the brain by the gonadotropin-releasing hormone (GnRH), but also by complex steroid feedback mechanisms. In this study, after the recent cloning of the three gonadotropin subunits of sea bass (Dicentrarchus labrax), we aimed at investigating the effects of GnRH and sexual steroids on pituitary gonadotropin mRNA levels, in this valuable aquaculture fish species. Implantation of sea bass, in the period of sexual resting, for 12 days with estradiol (E2), testosterone (T) or the non-aromatizable androgen dihydrotestosterone (DHT), almost suppressed basal expression of FSHbeta (four to 15-fold inhibition from control levels), while slightly increasing that of alpha (1.5-fold) and LHbeta (approx. twofold) subunits. Further injection with a GnRH analogue (15 microg/kg BW; [D-Ala6, Pro9-Net]-mGnRH), had no effect on FSHbeta mRNA levels, but stimulated (twofold) pituitary alpha and LHbeta mRNA levels in sham- and T-implanted fish, and slightly in E2- and DHT-implanted fish (approx. 1.5-fold). The GnRHa injection, as expected, elevated plasma LH levels with a parallel decrease on LH pituitary content, with no differences between implanted fish. In conclusion, high circulating steroid levels seems to exert different action on gonadotropin secretion, inhibiting FSH while stimulating LH synthesis. In these experimental conditions, the GnRHa stimulate LH synthesis and release, but have no effect on FSH synthesis.  相似文献   

15.
Anterior pituitary (AP) glands were removed from groups of female golden hamsters at 0900 h on estrus (E), diestrus I (DI), and diestrus II (DII) and at 1200 h and 1500 h on proestrus (P12 and P15), as well as at 0900 h from ovariectomized hamsters (OVX). Hemipituitaries were incubated in culture medium with or without 10(-8) M luteinizing hormone-releasing hormone (LHRH) for 3 h at 37 degrees C to determine the magnitude of basal and LHRH-stimulated follicle-stimulating hormone (FSH) release. All samples were assessed for FSH activity by radioimmunoassay and radioreceptor assay. In a second set of experiments, AP were removed from E, DII, and OVX hamsters and bisected. One hemipituitary was homogenized in 10 mM Tris-HCl and the other half was incubated for 3 h. Follicle-stimulating hormone forms present within pituitary extracts or secreted into medium were separated by an isoelectric focusing technique, chromatofocusing. Basal FSH release was lowest in AP collected on DII and P12, higher in AP collected on E and DI, and highest in AP from OVX. Luteinizing hormone-releasing hormone-stimulated release of FSH was highest in AP obtained on DII and P12, lower in AP collected on E and DI, and lowest in AP from OVX. Radio-receptor-to-radioimmunoassay ratio of secreted FSH was greatest when basal FSH secretion was low and LHRH sensitivity was high (DII and P12) and least when basal FSH secretion was high and LHRH sensitivity low (E and after OVX).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

17.
Both testosterone (T) and gonadotropin-releasing hormone (GnRH)-antagonist (GnRH-A) when given alone lower serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact and castrated rats. However, when graded doses of testosterone enanthate (T.E.) were given to GnRH-A-treated intact male rats, a paradoxical dose-dependent increase in serum FSH occurred; whereas serum LH remained suppressed. This surprising finding led us to ask whether the paradoxical increase in serum FSH in GnRH-A-suppressed animals was a direct stimulatory effect of T on the hypothalamic-pituitary axis or the result of a T effect on a testicular regulator of FSH. To test these hypotheses, we treated adult male castrated rats with GnRH-A and graded doses of T.E. In both intact and castrated rats, serum LH remained undetectable in GnRH-A-treated rats with or without T.E. However, addition of T.E. to GnRH-A led to a dose-dependent increase in serum FSH in castrated animals as well, thus pointing against mediation by a selective testicular regulator of FSH. These data provide evidence that pituitary LH and FSH responses may be differentially regulated under certain conditions. When the action of GnRH is blocked (such as in GnRH-A-treated animals), T directly and selectively increases pituitary FSH secretion.  相似文献   

18.
We wish to use a gonadotrophin-releasing hormone (GnRH) antagonist in the mare as a tool for investigating the control of the oestrous cycle. The aim of this study was to test the effectiveness of the antagonist cetrorelix by testing both in vitro, using perifused equine anterior pituitary cells, and in vivo in seasonally acyclic mares. Pituitary cells were prepared and after 3-4 days incubation, loaded onto columns and given four pulses of GnRH (at 0, 30, 60 and 90 min; dose-response study). After the second GnRH pulse, infusion of cetrorelix began (0, 100, 1000 and 2000 pmol/l) and continued until the end of the experiment. To mimic luteal phase conditions, cells were pre-incubated and perifused with progesterone (25 nmol/l) and GnRH pulses given at 0, 90, 180 and 270 min. Cetrorelix (0 or 1000 pmol/l) began after the second GnRH pulse. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were measured in 5 min fractions. Both FSH and LH response areas (above baseline) after GnRH were inhibited by 1000 pmol/l cetrorelix (P < 0.01, P < 0.01, respectively) but not by 100 pmol/l cetrorelix. Similarly, in the presence of progesterone, cetrorelix inhibited the FSH (P < 0.001) and LH (P = 0.0002) response area. Seasonally acyclic mares, pre-treated for 3 days with progesterone (150 mg i.m. per day) were given cetrorelix as (i) a loading dose of 1 microg/kg then infusion at 2.2 ng/(kg min) for 90 min, (ii) a s.c. injection at 20 microg/kg, (iii) infusion at 2.2 ng/(kg min) for 48 h, and (iv) no cetrorelix (control mares). At 90 min, 6, 24 and 48 h after cetrorelix was first administered, mares were given a bolus injection of GnRH (22.2 ng/kg i.v.) and the FSH and LH responses measured. All doses of cetrorelix inhibited the FSH response at 90 min. The response was no longer suppressed at 6 h in the 90 min infusion group, showing a rapid recovery from inhibition. At 24 h, the FSH responses in the injected and 48 h infusion group were suppressed. The LH concentrations were low and showed no significant changes. This study has defined the time course and dose of cetrorelix with respect to its effect on FSH in the horse. It is concluded that cetrorelix could be used to elucidate the role of FSH in follicular development in cyclic mares.  相似文献   

19.
This paper further substantiates the physiological role of beta-endorphin (beta-END) in the control of the cyclic LH secretion and provides new data on the interactions between 17 beta-estradiol (17 beta-E2) and beta-END at both the hypothalamic and pituitary levels. At the hypothalamic level, during the estrous cycle in rats, beta-END concentrations were highest on diestrus I in the arcuate nucleus, median preoptic area and median eminence and lowest at the time of the preovulatory 17 beta-E2 surge on proestrus, before the subsequent preovulatory hypothalamic GnRH and plasma LH surges. Data obtained in ovariectomized 17 beta-E2-treated ewes support the direct involvement of 17 beta-E2 in changes in beta-END and GnRH concentrations in these hypothalamic areas. At the anterior pituitary level, in vitro results obtained using anterior pituitaries from the proestrus morning cycling female rat have shown that 17 beta-E2 strongly suppresses beta-END secretion and that GnRH stimulates the release of beta-END. Furthermore, marked fluctuations were observed for plasma beta-END throughout the menstrual cycle in the woman. Low beta-END concentrations were observed in the period preceding the LH preovulatory surge. Taken together, these results show that: (1) decreases in hypothalamic beta-END concentrations, which are controlled at least by circulating levels of 17 beta-E2, modulate GnRH synthesis and/or release and contribute to the mechanisms which initiate the LH surge; (2) anterior pituitary beta-END might be involved in the mechanisms which terminate the LH surge.  相似文献   

20.
The neuropeptide pituitary adenylate cyclase activating polypeptide (ADCYAP 1, or PACAP) has been demonstrated to enhance gonadotropin-releasing hormone (GnRH)-induced gonadotropin secretion and regulate gonadotropin subunit gene expression in cultures of anterior pituitary cells. In the present study, we used in situ hybridization and real-time polymerase chain reaction to examine the expression of Pacap mRNA within the paraventricular nucleus (PVN) and anterior pituitary throughout the estrous cycle of the rat. Levels of luteinizing hormone in serum and pituitary gonadotropin subunit mRNAs were evaluated and displayed cyclic fluctuations similar to those reported previously. Pacap mRNA expression in the PVN and pituitary varied significantly during the estrous cycle, with the greatest changes occurring on the day of proestrus. Pacap mRNA levels in the PVN declined significantly on the morning of diestrus. During proestrus, PVN Pacap mRNA levels significantly increased 3 h before the gonadotropin surge and then declined. Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a moderate decline at the time of the gonadotropin surge and a significant increase later in the evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin increased significantly following the rise in pituitary Pacap mRNA, at the termination of the secondary surge in follicle-stimulating hormone beta (Fshb) gene expression. These results suggest that PACAP is involved in events before and following the gonadotropin surge, perhaps through increased gonadotroph sensitivity to GnRH and suppression of Fshb subunit expression through increased follistatin, as previously observed in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号