首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.  相似文献   

2.
Population differentiation for phenotypic plasticity of 12 morphological and reproductive traits was investigated in five populations of the Stellaria longipes complex including a population of the sand dune endemic S. arenicola. Population differentiation was detected for the mean (genotypic) value, amount of plasticity, and pattern of plasticity of traits. Average amount of plasticity was not related to degree of isozyme variability in the populations. Differentiation for pattern of plasticity was much more common than for amount. The direction and extent of divergence among populations was dependent on which of the three trait aspects was under consideration (mean, amount of plasticity, pattern of plasticity) and did not reflect their similarity as revealed by enzyme electrophoretic data. It was concluded that trait means, amounts of plasticity, and patterns of plasticity are independent of one another during evolutionary divergence and may be influenced by mosaic selection.  相似文献   

3.
Comparing the patterns of population divergence using both neutral genetic and phenotypic traits provides an opportunity to examine the relative importance of evolutionary mechanisms in shaping population differences. We used microsatellite markers to examine population genetic structure in the Mexican sailfin mollies Poecilia velifera and P. petenensis. We compared patterns of genetic structure and divergence to that in two types of phenotypic traits: morphological characters and mating behaviours. Populations within each species were genetically distinct, and conformed to a model of isolation by distance, with populations within different geographical regions being more genetically similar to one another than were populations from different regions. Bayesian clustering and barrier analyses provided additional support for population separation, especially between geographical regions. In contrast, none of the phenotypic traits showed any type of geographical pattern, and population divergence in these traits was uncorrelated with that found in neutral markers. There was also a weaker pattern of regional differences among geographical regions compared to neutral genetic divergence. These results suggest that while divergence in neutral traits is likely a product of population history and genetic drift, phenotypic divergence is governed by different mechanisms, such as natural and sexual selection, and arises at spatial scales independent from those of neutral markers.  相似文献   

4.
This study examined the patterns of morphological variation both between species, and between sexes and among populations within each species of the Mexican sailfin mollies, Poecilia velifera and Poecilia petenensis , using geometric morphometrics and linear measurements of morphological traits. While sexes within each species differed in characteristics that may be important in sexual selection, such as length of the dorsal fin, species differed in traits, such as body depth, that may also be influenced by natural selection due to differences in habitats. Within each species, many morphological traits were similar among populations, but important differences, including caudal peduncle depth in P. petenensis (but not in P. velifera ), suggested that habitat differences may also be important in shaping population divergence independently within each species. Indeed, the evolutionary vectors of male morphological population divergence for each species differed by an angle of 98·5°, representing nearly orthogonal vectors and suggesting independent shape divergence between these two molly species. Finally, geographic isolation did not explain the morphological differentiation seen among populations, suggesting that natural and sexual selection were strong forces promoting morphological diversification within these two species, despite the potential for a high degree of population connectivity and gene flow.  相似文献   

5.
Drosophila montana, a species of the Drosophila virilis group, has distributed around the northern hemisphere. Phylogeographic analyses of two North American and one Eurasian population of this species offer a good background for the studies on the extent of variation in phenotypic traits between populations as well as for tracing the selection pressures likely to play a role in character divergence. In the present paper, we studied variation in the male courtship song, wing and genital characters among flies from Colorado (USA), Vancouver (Canada) and Oulanka (Finland) populations. The phenotypic divergence among populations did not coincide with the extent of their genetic divergence, suggesting that the characters are not evolving neutrally. Divergence in phenotypic traits was especially high between the Colorado and Vancouver populations, which are closer to each other in terms of their mtDNA genotypes than they are to the Oulanka population. The males of the Colorado population showed high divergence especially in song traits and the males of the Vancouver population in wing characters. Among the male song traits, two characters known to be under sexual selection and a trait important in species recognition differed clearly between populations, implying a history of directional and/or diversifying rather than balancing selection. The population divergence in wing characters is likely to have been enhanced by natural selection associated with environmental factors, whereas the male genitalia traits may have been influenced by sexual selection and/or sexual conflict.  相似文献   

6.
The adaptive landscape and the G-matrix are keys concepts for understanding how quantitative characters evolve during adaptive radiation. In particular, whether the adaptive landscape can drive convergence of phenotypic integration (i.e., the pattern of phenotypic variation and covariation summarized in the P-matrix) is not well studied. We estimated and compared P for 19 morphological traits in eight species of Caribbean Anolis lizards, finding that similarity in P among species was not correlated with phylogenetic distance. However, greater similarity in P among ecologically similar Anolis species (i.e., the trunk-ground ecomorph) suggests the role of convergent natural selection. Despite this convergence and relatively deep phylogenetic divergence, a large portion of eigenstructure of P is retained among our eight focal species. We also analyzed P as an approximation of G to test for correspondence with the pattern of phenotypic divergence in 21 Caribbean Anolis species. These patterns of covariation were coincident, suggesting that either genetic constraint has influenced the pattern of among-species divergence or, alternatively, that the adaptive landscape has influenced both G and the pattern of phenotypic divergence among species. We provide evidence for convergent evolution of phenotypic integration for one class of Anolis ecomorph, revealing yet another important dimension of evolutionary convergence in this group.  相似文献   

7.
Morphological divergence among species may be constrained by the pattern of genetic variances and covariances among traits within species. Assessing the existence of such a relationship in nature requires information on the stability of intraspecific correlation and covariance structure and the correspondence of this structure to the pattern of evolutionary divergence within a lineage. Here, we investigate these issues for nine morphological traits and 15 species of stalk-eyed flies in the genus Diasemopsis. Within-species matrices for these traits were generated from phenotypic data for all the Diasemopsis species and from genetic data for a single Diasemopsis species, D. dubia. The among-species pattern of divergence was assessed by calculating the evolutionary correlations for all pairwise combinations of the morphological traits along the phylogeny of these species. Comparisons of intraspecific matrices reveal significant similarity among all species in the phenotypic correlations matrices but not the covariance matrices. In addition, the differences in correlation structure that do exist among species are not related to their phylogenetic placement or change in the means of the traits. Comparisons of the phenotypic and phylogenetic matrices suggest a strong relationship between the pattern of evolutionary change among species and both the intraspecific correlation structure and the stability of this structure among species. The phenotypic and the phylogenetic matrices are significantly similar, and pairs of traits whose intraspecific correlations are more stable across taxa exhibit stronger coevolution on the phylogeny. These results suggest either the existence of strong constraints on the pattern of evolutionary change or a consistent pattern of correlated selection shaping both the phenotypic and phylogenetic matrices. The genetic correlation structure for D. dubia, however, does not correspond with patterns found in the phenotypic and phylogenetic data. Possible reasons for this disagreement are discussed.  相似文献   

8.
By analysing patterns of phenotypic integration and multivariate covariance structure of five metric floral traits in nine Iberian populations of bumblebee‐pollinated Helleborus foetidus (Ranunculaceae), this paper attempts to test the general hypothesis that pollinators enhance floral integration and selectively modify phenotypic correlations between functionally linked floral traits. The five floral traits examined exhibited significant phenotypic integration at all populations, and both the magnitude and the pattern of integration differed widely among populations. Variation in extent and pattern of integration was neither distance‐dependent nor significantly related to between‐population variation in taxonomical composition and morphological diversity of the pollinator assemblage. Patterns of floral integration were closer to expectations derived from consideration of developmental affinities between floral whorls than to expectations based on a pollinator‐mediated adaptive hypothesis. Taken together, results of this study suggest that between‐population differences in magnitude and pattern of floral integration in H. foetidus are probably best explained as a consequence of random genetic sampling in the characteristically small and ephemeral populations of this species, rather than reflecting the selective action of current pollinators.  相似文献   

9.
Sexual selection represents a potent force that can drive rapid population differentiation in traits related to reproductive success. Hence, sexual traits are expected to show greater population divergence than non-sexual traits. We test this prediction by exploring patterns of morphological differentiation of the exaggerated fore femur (a male-specific sexual trait) and the wing (a non-sexual trait) among allopatric and sympatric populations of the widespread sister dung fly species Sepsis neocynipsea and Sepsis cynipsea (Diptera: Sepsidae). While both species occur in Eurasia, S. neocynipsea also abounds in North America, albeit previous studies suggest strong differentiation in morphology, behavior, and mating systems. To evaluate the degree of differentiation expected under neutrality between S. cynipsea, European S. neocynipsea, and North American S. neocynipsea, we genotyped 30 populations at nine microsatellite markers, revealing almost equal differentiation between and minor differentiation among geographic populations within the three lineages. Landmark-based analysis of 18 populations reared at constant 18 and 24°C in a laboratory common garden revealed moderate temperature-dependent phenotypic plasticity and significant heritable differentiation in size and shape of male forelegs and wings among iso-female lines of the three lineages. Following the biological species concept, there was weaker differentiation between cross-continental populations of S. neocynipsea relative to S. cynipsea, and more fore femur differentiation between the two species in sympatry versus allopatry (presumably due to character displacement). Contrary to expectation, wing morphology showed as much shape differentiation between evolutionary independent lineages as fore femora, providing no evidence for faster diversification of traits primarily engaged in mating.  相似文献   

10.
Phenotypic plasticity: an evolving plant character   总被引:4,自引:0,他引:4  
Phenotypic plasticity is an important mode of adaptation to temporal and spatial environmental variability, particularly in plants. Although data are available concerning interspecific differences in the sizes and shapes of characters, there is little information concerning differences between taxa for the plastic responses of those characters. We have measured: (1) the mean value of a character, (2) the amount of character plasticity, and (3) the pattern of phenotypic plasticity for species in five genera, and calculated the divergences among species for each of these three measures. We compared the divergences of these measures to address the question of whether there is a relationship between the evolution of the character means of species and the evolution of the plasticities of those characters. We found that the evolutionary divergence of character plasticities could be independent of the interspecific divergence of character means. There was, however, a tendency for the divergence of amounts and patterns of plasticity to be related.  相似文献   

11.
This study examines patterns of variation in quantitative floral traits among 18 disjunct populations of Viola cazorlensis (Violaceae), a relict endemic violet of south-eastern Spain. At all sites, the species is almost exclusively pollinated by a single species of day-flying hawkmoth. Differences between populations were significant for all traits examined, and population means exhibit a broad range of variation. When all characters are considered together, each population displays a unique combination of characters. Despite interpopulation differences in character means, local populations retain most of the variability of the entire species. Floral traits do not vary in unison among flowers, and at least four different subsets of independently varying traits are identifiable. Floral similarity between populations of V. cazorlensis was largely unrelated to geographic proximity, as revealed by analyses at both large and small geographic scales. The geographic pattern of floral variation among populations represents a random patchwork, with unique combinations of character means occurring randomly across the study region. Marked population differences in quantitative floral traits in spite of spatial constancy in the identity of pollinators, a disintegrated floral phenotype, and prevailingly random geographic variation among populations, suggest low adaptedness of the floral phenotype of V. cazorlensis to its current hawkmoth pollinators.  相似文献   

12.
Additive genetic variances and covariances were estimated for life history and morphological traits in two adjacent populations of the grass, Holcus lanatus L. Significant phenotypic differentiation was found between the two populations for four of the 15 morphological attributes measured. Significant differences in genetic architecture were found between the two populations for 11 of the 13 traits for which genetic variance components could be calculated. Estimates of genetic correlations also showed considerable divergence between the populations. The genetic divergence was much larger than would have been anticipated from simple measures of phenotypic differentiation. These results show that, even in plant species with relatively large population sizes, differences in genetic variance-covariance patterns can occur between adjacent populations.  相似文献   

13.
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel‐web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285–392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110‐kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders’ behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.  相似文献   

14.
Phenotypic and genetic variation within and among eight populations of Arabis serrata are documented in this study. This species shows great morphological variation throughout its geographical distribution in Japan. Plants are located in habitats with different types of soils and degree of disturbance. Half-sibs progenies from eight populations were collected and cultivated in a garden experiment. Nine morphological traits representing size and shape of rosette leaves were recorded. Univariate analyses of measured traits showed that phenotypic means differed among populations for all characters. Leaves of plants from disturbed habitats had the longest petioles (lanceolate) and plants from limestone habitats showed the most roundness in leaf shape (ovate). The northernmost populations always revealed the smallest leaves. Multivariate principal component analyses also showed that leaf shape and size varied among populations. The first three principal components explained 98.5% of the variation. Coefficients of variation had a very wide range and differed from one population to another. Some traits (e.g. leaf width/leaf length ratio) were consistently less variable while others (e.g. leaf area and petiole length) were more plastic. All traits had significant genetic variance in all populations. Intra-class correlation coefficients differed for most of the traits and each population presented a different range of values. Most of the leaf traits were intercorrelated in all the populations studied, although some populations were integrated more tightly for some traits. Populations of A. serrata are differentiated in phenotypic means but they display a mosaic of traits with slight morphological differences in each locality (i.e. a quantitative genetic variation). Some traits can be correlated to the habitats that they occupy but for some of them it is difficult to assign an actual adaptive value.  相似文献   

15.
Two experiments were carried out using two different approaches to compare populations ofCrepis tectorum (Asteraceae). One was based on a comparison of means of various vegetative and reproductive characters and another was based on a comparison of response patterns of the same characters in a series of environments. Population divergence within two earlier recognized form series, one from weed habitats and one from alvar habitats on Baltic islands, resulted in a partially overlapping pattern in cluster analyses based on character means. However, the pattern revealed by a comparison of the direction and amount of plastic response suggested that populations within the two form series had more similar response patterns than other combinations of populations. It was concluded that patterns of plasticity may provide useful additional information on the overall similarity among taxa. An hypothesis that plants in weed populations should exhibit a greater phenotypic response to the environments than plants in alvar populations was rejected.  相似文献   

16.
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity.  相似文献   

17.
Variation in the amount and pattern of plasticity was studied in three cytotypes (4x, 6x, and 8x) of Stellaria longipes and diploids of its suspected progenitor S. longifolia. All 13 traits considered showed plasticity. There were significant differences among cytotypes and habitats in plasticity for many traits. Overall, the diploids, S. longifolia, were most plastic, and the three cytotypes of S. longipes did not differ in amount of plasticity. Stellaria longifolia showed divergence from S. longipes in the pattern of plasticity as well. In general, cytotypes with more similar chromosome numbers had the same pattern of plasticity for more traits. Individuals from tundra populations differed in their pattern of plasticity from those of montane, boreal, and prairie origin, which were more similar to one another. Differences in plasticity among cytotypes were due primarily to divergence in amount, while differences among habitats were most often accounted for by divergent patterns of plasticity. We conclude that both polyploidy and natural selection have affected the evolution of plastic responses in this species complex. Analysis of the correlation between pairs of traits provided evidence that the pattern and amount of plasticity operate independently of one another and may be evolving separately.  相似文献   

18.
Quantitative genetic models of evolution rely on the genetic variance-covariance matrix to predict the phenotypic response to selection. Both prospective and retrospective studies of phenotypic evolution across generations rely on assumptions about the constancy of patterns of genetic covariance through time. In the absence of robust theoretical predictions about the stability of genetic covariances, this assumption must be tested with empirical comparisons of genetic parameters among populations and species. Genetic variance-covariance matrices were estimated for a suite of antipredator traits in two populations of the northwestern garter snake, Thamnophis ordinoides. The characters studied include color pattern and antipredator behaviors that interact to facilitate escape from predators. Significant heritabilities for all traits were detected in both populations. Genetic correlations and covariances were found among behaviors in both populations and between color pattern and behavior in one of the populations. Phenotypic means differed among populations, but pairwise comparisons revealed no heterogeneity of genetic parameters between the populations. The structure of the genetic variance-covariance matrix has apparently not changed significantly during the divergence of these two populations.  相似文献   

19.
Phenotypic plasticity is essential for plant adaptation to changing environments but some factors limit its expression, causing plants to fail in producing the best phenotype for a given environment. Phenotypic integration refers to the pattern and magnitude of character correlations and it might play a role as an internal constraint to phenotypic plasticity. We tested the hypothesis that phenotypic integration – estimated as the number of significant phenotypic correlations between traits – constrains phenotypic plasticity of plants. The rationale is that, for any phenotypic trait, the more linked with other traits it is, the more limited is its range of variation. In the perennial species Convolvulus chilensis (Convolvulaceae) and Lippia alba (Verbenaceae) we determined the relationship between phenotypic plasticity to relevant environmental factors – shading for C. chilensis and drought for L. alba– and the magnitude of phenotypic integration of morphological and biomass allocation traits. In C. chilensis plants, plasticity to shading of a given trait decreased with the number of significant correlations that it had with the other traits. Likewise, the characters that showed greater plasticity to experimental drought in L. alba plants had fewer significant phenotypic correlations with other characters. We report a novel limit to phenotypic plasticity of plants by showing that the phenotypic trait architecture may constrain their plastic, functional responses to the environment.  相似文献   

20.
Aims Experimental studies of the response to environmental variation of closely related taxa are needed to understand the mechanisms underlying phenotypic divergence, habitat segregation and range span within a radiating genus. We explored the magnitude of phenotypic differentiation and adaptive plasticity in relation to edaphic variation and its significance for habitat segregation and range span in Iberian columbines.Methods We performed a common garden experiment varying soil type (calcareous vs. siliceous) and depth (rocky-shallow vs. deep) with two pairs of widespread and narrowly distributed subspecies of Iberian columbines: Aquilegia vulgaris (subspp. vulgaris and nevadensis) and Aquilegia pyrenaica (subspp. pyrenaica and cazorlensis). We compared tolerance to edaphic variation, trait differentiation and adaptive plasticity of 10 morpho-functional traits between species and distribution ranges. Additionally, we obtained estimates of the competitive environment faced by each taxon in two to four populations per taxa.Important findings Results partially support hypotheses of higher competitive ability and tolerance to edaphic variation in widespread than in narrow endemic taxa. At the species level, the widely distributed taxon was the most tolerant to edaphic variation. Within species, no consistent pattern emerged since the population from the most widespread subspecies was the most tolerant in A. vulgaris but not in A. pyrenaica. Columbines were differentiated in many traits at species and range level. However, the pattern of differentiation does not fully support the hypothesis of higher specialization and stress tolerance in narrow endemics. Although plasticity was generally low, the results support the hypothesis of adaptive plasticity in widespread but not in restricted taxa at least at species level. Ecological differences (adaptive plasticity and competitive ability among others) may have contributed to phenotypic divergence and edaphic niche segregation, as well as to differences in range span among columbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号