首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of the chitin-binding domain (ChBD) of chitinase A1 (ChiA1) from a Gram-positive bacterium, Bacillus circulans WL-12, was determined by means of multidimensional heteronuclear NMR methods. ChiA1 is a glycosidase that hydrolyzes chitin and is composed of an N-terminal catalytic domain, two fibronectin type III-like domains, and C-terminal ChBD(ChiA1) (45 residues, Ala(655)-Gln(699)), which binds specifically to insoluble chitin. ChBD(ChiA1) has a compact and globular structure with the topology of a twisted beta-sandwich. This domain contains two antiparallel beta-sheets, one composed of three strands and the other of two strands. The core region formed by the hydrophobic and aromatic residues makes the overall structure rigid and compact. The overall topology of ChBD(ChiA1) is similar to that of the cellulose-binding domain (CBD) of Erwinia chrysanthemi endoglucanase Z (CBD(EGZ)). However, ChBD(ChiA1) lacks the three aromatic residues aligned linearly and exposed to the solvent, which probably interact with cellulose in CBDs. Therefore, the binding mechanism of a group of ChBDs including ChBD(ChiA1) may be different from that proposed for CBDs.  相似文献   

2.
Chitinase Chit42 from Trichoderma harzianum CECT 2413 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin-binding domain (ChBD). We have produced hybrid chitinases with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Nicotiana tabacum ChiA chitinase and the cellulose-binding domain from cellobiohydrolase II of Trichoderma reesei. The chimeric chitinases had similar activities towards soluble substrate but higher hydrolytic activity than the native chitinase on high molecular mass insoluble substrates such as ground chitin or chitin-rich fungal cell walls.  相似文献   

3.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   

4.
Chitinase A1 from Bacillus circulans WL-12 comprises an N-terminal catalytic domain, two fibronectin type III-like domains, and a C-terminal chitin-binding domain (ChBD). In order to study the biochemical properties and structure of the ChBD, ChBD(ChiA1) was produced in Escherichia coli using a pET expression system and purified by chitin affinity column chromatography. Purified ChBD(ChiA1) specifically bound to various forms of insoluble chitin but not to other polysaccharides, including chitosan, cellulose, and starch. Interaction of soluble chitinous substrates with ChBD(ChiA1) was not detected by means of nuclear magnetic resonance and isothermal titration calorimetry. In addition, the presence of soluble substrates did not interfere with the binding of ChBD(ChiA1) to regenerated chitin. These observations suggest that ChBD(ChiA1) recognizes a structure which is present in insoluble or crystalline chitin but not in chito-oligosaccharides or in soluble derivatives of chitin. ChBD(ChiA1) exhibited binding activity over a wide range of pHs, and the binding activity was enhanced at pHs near its pI and by the presence of NaCl, suggesting that the binding of ChBD(ChiA1) is mediated mainly by hydrophobic interactions. Hydrolysis of beta-chitin microcrystals by intact chitinase A1 and by a deletion derivative lacking the ChBD suggested that the ChBD is not absolutely required for hydrolysis of beta-chitin microcrystals but greatly enhances the efficiency of degradation.  相似文献   

5.
The gene (chi92) encoding the extracellular chitinase of Aeromonas hydrophila JP101 has been cloned and expressed in Escherichia coli. The mature form of Chi92 is an 842-amino-acid (89.830-kDa) modular enzyme comprised of a family 18 catalytic domain, an unknown-function region (the A region), and three chitin-binding domains (ChBDs; Chi92-N, ChBD(CI), and ChBD(CII)). The C-terminally repeated ChBDs, ChBD(CI) and ChBD(CII), were grouped into family V of cellulose-binding domains on the basis of sequence homology. Chitin binding and enzyme activity studies with C-terminally truncated Chi92 derivatives lacking ChBDs demonstrated that the ChBDs are responsible for its adhesion to unprocessed and colloidal chitins. Further adsorption experiments with glutathione S-transferase (GST) fusion proteins (GST-CI and GST-CICII) demonstrated that a single ChBD (ChBD(CI)) could promote efficient chitin and cellulose binding. In contrast to the two C-terminal ChBDs, the Chi92-N domain is similar to ChiN of Serratia marcescens ChiA, which has been proposed to participate in chitin binding. A truncated derivative of Chi92 that contained only a catalytic domain and Chi92-N still exhibited insoluble-chitin-binding and hydrolytic activities. Thus, it appears that Chi92 contains Chi92-N as the third ChBD in addition to two ChBDs (ChBD(CI) and ChBD(CII)).  相似文献   

6.
Site-directed mutagenesis was carried out to investigate the roles of a number of highly conserved residues of the chitin-binding domain (ChBD) of Bacillus circulans chitinase A1 (ChiA1) in the binding of chitin. Analysis of single alanine replacement mutants showed that mutation of an exposed tryptophan residue (Trp(687)) impaired the binding to chitin, while mutation of other highly conserved residues, most carrying aromatic or hydrophobic side chains, did not significantly affect the binding activity. Interestingly, replacement of Trp(687) with phenylalanine significantly reduced chitin-binding activity at lower salt concentrations (0-1 M NaCl) but allowed strong binding to chitin at 2 M NaCl. Since Trp(687) is conserved among the ChBDs belonging to the bacterial ChiA1 subfamily, the data presented suggest a general mechanism in which this exposed tryptophan, which is located in the cleft formed between two beta-sheets as revealed by the solution structure [J. Biol. Chem. 275 (2000) 13654], makes a major contribution to ligand binding presumably through hydrophobic interactions. Furthermore, modulation of the chitin-binding activity by the conserved amino acid replacement (W687F) and a shift in the ionic strength of buffer has led to the development of an elutable affinity tag for single column purification of recombinant proteins.  相似文献   

7.
Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.  相似文献   

8.
Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. Chitinase Chit42 from Trichoderma atroviride PTCC5220 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin binding domain (ChBD). We have produced a chimeric chitinase with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Serratia marcescens Chitinase B. The fusion of ChBD improved the affinity to crystalline and colloidal chitin and also the enzyme activity of the chimeric chitinase when compared with the native Chit42. The chimeric chitinase showed higher antifungal activity toward phytopathogenic fungi.  相似文献   

9.
10.
Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.  相似文献   

11.
Chitinase C (ChiC) from Streptomyces griseus HUT6037 was the first glycoside hydrolase family 19 chitinase that was found in an organism other than higher plants. An N-terminal chitin-binding domain and a C-terminal catalytic domain connected by a linker peptide constitute ChiC. We determined the crystal structure of full-length ChiC, which is the only representative of the two-domain chitinases in the family. The catalytic domain has an alpha-helix-rich fold with a deep cleft containing a catalytic site, and lacks three loops on the domain surface compared with the catalytic domain of plant chitinases. The chitin-binding domain is an all-beta protein with two tryptophan residues (Trp59 and Trp60) aligned on the surface. We suggest the binding mechanism of tri-N-acetylchitotriose onto the chitin-binding domain on the basis of molecular dynamics (MD) simulations. In this mechanism, the ligand molecule binds well on the surface-exposed binding site through two stacking interactions and two hydrogen bonds and only Trp59 and Trp60 are involved in the binding. Furthermore, the flexibility of the Trp60 side-chain, which may be involved in adjusting the binding surface to fit the surface of crystalline chitin by the rotation of chi2 angle, is shown.  相似文献   

12.
The chitin-binding domain of Streptomyces griseus chitinase C (ChBDChiC) belongs to CBM family 5. Only two exposed aromatic residues, W59 and W60, were observed in ChBDChiC, in contrast to three such residues on CBDCel5 in the same CBM family. To study importance of these residues in binding activity and other functions of ChBDChiC, site-directed mutagenesis was carried out. Single (W59A and W60A) and double (W59A/W60A) mutations abolished the binding activity of ChiC to colloidal chitin and decreased the hydrolytic activity toward not only colloidal chitin but also a soluble high Mr substrate, glycol chitin. Interaction of ChBDChiC with oligosaccharide was eliminated by these mutations. The hydrolytic activity toward oligosaccharide was increased by deletion of ChBD but not affected by these mutations, indicating that ChBD interferes with oligosaccharide hydrolysis but not through its binding activity. The antifungal activity was drastically decreased by all mutations and significant difference was observed between single and double mutants. Taken together with the structural information, these results suggest that ChBDChiC binds to chitin via a mechanism significantly different from CBDCel5, where two aromatic residues play major role, and contributes to various functions of ChiC. Sequence comparison indicated that ChBDChiC-type CBMs are dominant in CBM family 5.  相似文献   

13.
The antagonism of Trichoderma strains usually correlates with the secretion of fungal cell wall degrading enzymes such as chitinases. Chitinase Chit42 is believed to play an important role in the biocontrol activity of Trichoderma strains as a biocontrol agent against phytopathogenic fungi. Chit42 lacks a chitin-binding domain (ChBD) which is involved in its binding activity to insoluble chitin. In this study, a chimeric chitinase with improved enzyme activity was produced by fusing a ChBD from T. atroviride chitinase 18–10 to Chit42. The improved chitinase containing a ChBD displayed a 1.7-fold higher specific activity than chit42. This increase suggests that the ChBD provides a strong binding capacity to insoluble chitin. Moreover, Chit42-ChBD transformants showed higher antifungal activity towards seven phytopathogenic fungal species.  相似文献   

14.
A chitinase is a hyperthermophilic glycosidase that effectively hydrolyzes both α and β crystalline chitins; that studied here was engineered from the genes PF1233 and PF1234 of Pyrococcus furiosus. This chitinase has unique structural features and contains two catalytic domains (AD1 and AD2) and two chitin-binding domains (ChBDs; ChBD1 and ChBD2). A partial enzyme carrying AD2 and ChBD2 also effectively hydrolyzes crystalline chitin. We determined the NMR and crystal structures of ChBD2, which significantly enhances the activity of the catalytic domain. There was no significant difference between the NMR and crystal structures. The overall structure of ChBD2, which consists of two four-stranded β-sheets, was composed of a typical β-sandwich architecture and was similar to that of other carbohydrate-binding module 2 family proteins, despite low sequence similarity. The chitin-binding surface identified by NMR was flat and contained a strip of three solvent-exposed Trp residues (Trp274, Trp308 and Trp326) flanked by acidic residues (Glu279 and Asp281). These acidic residues form a negatively charged patch and are a characteristic feature of ChBD2. Mutagenesis analysis indicated that hydrophobic interaction was dominant for the recognition of crystalline chitin and that the acidic residues were responsible for a higher substrate specificity of ChBD2 for chitin compared with that of cellulose. These results provide the first structure of a hyperthermostable ChBD and yield new insight into the mechanism of protein-carbohydrate recognition. This is important in the development of technology for the exploitation of biomass.  相似文献   

15.
The gene (chi92) encoding the extracellular chitinase of Aeromonas hydrophila JP101 has been cloned and expressed in Escherichia coli. The mature form of Chi92 is an 842-amino-acid (89.830-kDa) modular enzyme comprised of a family 18 catalytic domain, an unknown-function region (the A region), and three chitin-binding domains (ChBDs; Chi92-N, ChBDCI, and ChBDCII). The C-terminally repeated ChBDs, ChBDCI and ChBDCII, were grouped into family V of cellulose-binding domains on the basis of sequence homology. Chitin binding and enzyme activity studies with C-terminally truncated Chi92 derivatives lacking ChBDs demonstrated that the ChBDs are responsible for its adhesion to unprocessed and colloidal chitins. Further adsorption experiments with glutathione S-transferase (GST) fusion proteins (GST-CI and GST-CICII) demonstrated that a single ChBD (ChBDCI) could promote efficient chitin and cellulose binding. In contrast to the two C-terminal ChBDs, the Chi92-N domain is similar to ChiN of Serratia marcescens ChiA, which has been proposed to participate in chitin binding. A truncated derivative of Chi92 that contained only a catalytic domain and Chi92-N still exhibited insoluble-chitin-binding and hydrolytic activities. Thus, it appears that Chi92 contains Chi92-N as the third ChBD in addition to two ChBDs (ChBDCI and ChBDCII).  相似文献   

16.
One of the chitinase genes of Alteromonas sp. strain O-7, the chitinase C-encoding gene (chiC), was cloned, and the nucleotide sequence was determined. An open reading frame coded for a protein of 430 amino acids with a predicted molecular mass of 46,680 Da. Alignment of the deduced amino acid sequence demonstrated that ChiC contained three functional domains, the N-terminal domain, a fibronectin type III-like domain, and a catalytic domain. The N-terminal domain (59 amino acids) was similar to that found in the C-terminal extension of ChiA (50 amino acids) of this strain and furthermore showed significant sequence homology to the regions found in several chitinases and cellulases. Thus, to evaluate the role of the domain, we constructed the hybrid gene that directs the synthesis of the fusion protein with glutathione S-transferase activity. Both the fusion protein and the N-terminal domain itself bound to chitin, indicating that the N-terminal domain of ChiC constitutes an independent chitin-binding domain.  相似文献   

17.
Wang FP  Li Q  Zhou Y  Li MG  Xiao X 《Proteins》2003,53(4):908-916
The chitinase gene chi1 of Aeromonas caviae CB101 encodes an 865-amino-acid protein (with signal peptide) composed of four domains named from the N-terminal as an all-beta-sheet domain ChiN, a triosephosphate isomerase (TIM) catalytic domain, a function-unknown A region, and a putative chitin-binding domain (ChBD) composed of two repeated sequences. The N-terminal 563-amino-acid segment of Chi1 (Chi1DeltaADeltaChBD) shares 74% identity with ChiA of Serratia marcescens. By the homology modeling method, the three-dimensional (3D) structure of Chi1DeltaADeltaChBD was constructed. It fit the structure of ChiA very well. To understand fully the function of the C-terminal module of Chi1 (from 564 to 865 amino acids), two different C-terminal truncates, Chi1DeltaChBD and Chi1DeltaADeltaChBD, were constructed, based on polymerase chain reaction (PCR). Comparison studies of the substrate binding, hydrolysis capacity, and specificity among Chi1 and its two truncates showed that the C-terminal putative ChBD contributed to the insoluble substrate-protein binding and hydrolysis; the A region did not have any function in the insoluble substrate-protein binding, but it did have a role in the chitin hydrolysis: Deletion of the A region caused the enzyme to lose 30-40% of its activity toward amorphous colloidal chitin and soluble chitin, and around 50% toward p-nitrophenyl (pNP)-chitobiose pNP-chitotriose, and its activity toward low-molecular-weight chitooligomers (GlcNAc)3-6 also dropped, as shown by analysis of its digestion processes. This is the first clear demonstration that a domain or segment without a function in insoluble substrate-chitinase binding has a role in the digestion of a broad range of chitin substrates, including low-molecular-weight chitin oligomers. The reaction mode of Chi1 is also described and discussed.  相似文献   

18.
Alteromonas sp. strain O-7 secretes chitinase A (ChiA), chitinase B (ChiB), and chitinase C (ChiC) in the presence of chitin. A gene cluster involved in the chitinolytic system of the strain was cloned and sequenced upstream of and including the chiA gene. The gene cluster consisted of three different open reading frames organized in the order chiD, cbp1, and chiA. The chiD, cbp1, and chiA genes were closely linked and transcribed in the same direction. Sequence analysis indicated that Cbp1 (475 amino acids) was a chitin-binding protein composed of two discrete functional regions. ChiD (1,037 amino acids) showed sequence similarity to bacterial chitinases classified into family 18 of glycosyl hydrolases. The cbp1 and chiD genes were expressed in Escherichia coli, and the recombinant proteins were purified to homogeneity. The highest binding activities of Cbp1 and ChiD were observed when alpha-chitin was used as a substrate. Cbp1 and ChiD possessed a chitin-binding domain (ChtBD) belonging to ChtBD type 3. ChiD rapidly hydrolyzed chitin oligosaccharides in sizes from trimers to hexamers, but not chitin. However, after prolonged incubation with large amounts of ChiD, the enzyme produced a small amount of (GlcNAc)(2) from chitin. The optimum temperature and pH of ChiD were 50 degrees C and 7.0, respectively.  相似文献   

19.
Chitinase 92 from Aeromonas hydrophila JP101 contains C-terminal repeated chitin-binding domains (ChBDs) which were named ChBD(CI) and ChBD(CII) and classified into family 5 carbohydrate-binding modules on the basis of sequence. In this work, we constructed single and double ChBD by use of the pET system, which expressed as isolated ChBD(CII) or ChBD(CICII). Polysaccharide-binding studies revealed that ChBD(CICII) not only bound to chitin, but also to other insoluble polysaccharides such as cellulose (Avicel) and xylan. In comparison with ChBD(CII), the binding affinities of ChBD(CICII) are about 10- and 12-fold greater toward colloidal and powdered chitin, indicating that a cooperative interaction exists between ChBD(CI) and ChBD(CII). In order to investigate the roles of the highly conserved aromatic amino acids in the interaction of ChBD(CICII) and chitin, we have performed site-directed mutagenesis. The data showed that W773A, W792A, Y796A and W797A mutant proteins exhibited a much weaker affinity for chitin than wild-type protein, suggesting that these residues play important roles in chitin binding.  相似文献   

20.
Interaction force of chitin-binding domains (ChBD1 and ChBD2) from a thermostable chitinase onto chitin surface was directly measured by atomic force microscopy (AFM) in a buffer solution. In the force curve measurement, multiple pull-off events were observed for the AFM tips functionalized with either ChBD1 or ChBD2, whereas the AFM tips terminated with nitrilotriacetic acid groups without ChBD showed no interaction peak, suggesting that the detected forces are derived from the binding functions of ChBDs onto the chitin surface. The force curve analyses indicate that the binding force of ChBD2 is stronger than that of ChBD1. This result suggests that ChBD1 and ChBD2 play different roles in adsorption onto chitin surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号