首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
The antagonism of Trichoderma strains usually correlates with the secretion of fungal cell wall degrading enzymes such as chitinases. Chitinase Chit42 is believed to play an important role in the biocontrol activity of Trichoderma strains as a biocontrol agent against phytopathogenic fungi. Chit42 lacks a chitin-binding domain (ChBD) which is involved in its binding activity to insoluble chitin. In this study, a chimeric chitinase with improved enzyme activity was produced by fusing a ChBD from T. atroviride chitinase 18–10 to Chit42. The improved chitinase containing a ChBD displayed a 1.7-fold higher specific activity than chit42. This increase suggests that the ChBD provides a strong binding capacity to insoluble chitin. Moreover, Chit42-ChBD transformants showed higher antifungal activity towards seven phytopathogenic fungal species.  相似文献   

2.
Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. Chitinase Chit42 from Trichoderma atroviride PTCC5220 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin binding domain (ChBD). We have produced a chimeric chitinase with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Serratia marcescens Chitinase B. The fusion of ChBD improved the affinity to crystalline and colloidal chitin and also the enzyme activity of the chimeric chitinase when compared with the native Chit42. The chimeric chitinase showed higher antifungal activity toward phytopathogenic fungi.  相似文献   

3.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

4.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   

5.
Canola (Brassica napus L.), an agro-economically important crop in the world, is sensitive to many fungal pathogens. One strategy to combat fungal diseases is genetic engineering through transferring genes encoding the pathogenesis-related (PR) proteins such as chitinase which cause the chitin degradation of fungal cell wall. Chitinase Chit42 from Trichoderma atroviride (PTCC5220) plays an important role in biocontrol and has high antifungal activity against a wide range of phytopathogenic fungi. This enzyme lacks a chitin binding domain (ChBD) which is involved in binding activity to insoluble chitin. In the present study, we investigated the effect of chitin binding domain fused to Chit42 when compared with native Chit42. These genes were over-expressed under the CaMV35S promoter in B. napus, R line Hyola 308. Transformation of cotyledonary petioles was achieved by pBISM2 and pBIKE1 constructs containing chimeric and native Chit42 genes respectively, via Agrobacterium method. The insertion of transgenes in T0 generation was verified through polymerase chain reaction (PCR) and Southern blot analysis. Antifungal activity of expressed chitinase in transgenic plants was also investigated by bioassays. The transgenic canola expressing chimeric chitinase showed stronger inhibition against phytopathogenic fungi that indicates the role of chitin binding domain.  相似文献   

6.
Chitinase C from Streptomyces griseus HUT6037 was discovered as the first bacterial chitinase in family 19 other than chitinases found in higher plants. Chitinase C comprises two domains: a chitin-binding domain (ChBD(ChiC)) for attachment to chitin and a chitin-catalytic domain for digesting chitin. The structure of ChBD(ChiC) was determined by means of 13C-, 15N-, and 1H-resonance nuclear magnetic resonance (NMR) spectroscopy. The conformation of its backbone comprised two beta-sheets composed of two and three antiparallel beta-strands, respectively, this being very similar to the backbone conformations of the cellulose-binding domain of endoglucanase Z from Erwinia chrysanthemi (CBD(EGZ)) and the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12 (ChBD(ChiA1)). The interaction between ChBD(ChiC) and hexa-N-acetyl-chitohexaose was monitored through chemical shift perturbations, which showed that ChBD(ChiC) interacted with the substrate through two aromatic rings exposed to the solvent as CBD(EGZ) interacts with cellulose through three characteristic aromatic rings. Comparison of the conformations of ChBD(ChiA1), ChBD(ChiC), and other typical chitin- and cellulose-binding domains, which have three solvent-exposed aromatic residues responsible for binding to polysaccharides, has suggested that they have adopted versatile binding site conformations depending on the substrates, with almost the same backbone conformations being retained.  相似文献   

7.
A chitinase is a hyperthermophilic glycosidase that effectively hydrolyzes both α and β crystalline chitins; that studied here was engineered from the genes PF1233 and PF1234 of Pyrococcus furiosus. This chitinase has unique structural features and contains two catalytic domains (AD1 and AD2) and two chitin-binding domains (ChBDs; ChBD1 and ChBD2). A partial enzyme carrying AD2 and ChBD2 also effectively hydrolyzes crystalline chitin. We determined the NMR and crystal structures of ChBD2, which significantly enhances the activity of the catalytic domain. There was no significant difference between the NMR and crystal structures. The overall structure of ChBD2, which consists of two four-stranded β-sheets, was composed of a typical β-sandwich architecture and was similar to that of other carbohydrate-binding module 2 family proteins, despite low sequence similarity. The chitin-binding surface identified by NMR was flat and contained a strip of three solvent-exposed Trp residues (Trp274, Trp308 and Trp326) flanked by acidic residues (Glu279 and Asp281). These acidic residues form a negatively charged patch and are a characteristic feature of ChBD2. Mutagenesis analysis indicated that hydrophobic interaction was dominant for the recognition of crystalline chitin and that the acidic residues were responsible for a higher substrate specificity of ChBD2 for chitin compared with that of cellulose. These results provide the first structure of a hyperthermostable ChBD and yield new insight into the mechanism of protein-carbohydrate recognition. This is important in the development of technology for the exploitation of biomass.  相似文献   

8.
Heterologous expression of two fungal chitinases, Chit33 and Chit42, from Trichoderma harzianum was tested in the different compartments and on the surface of Escherichia coli cells. Our goal was to find a fast and efficient expression system for protein engineering and directed evolution studies of the two fungal enzymes. Cytoplasmic overexpression resulted in both cases in inclusion body formation, where active enzyme could be recovered after refolding. Periplasmic expression of Chit33, and especially of Chit42, proved to be better suited for mutagenesis purposes. Recombinant chitinases from the periplasmic expression system showed activity profiles similar to those of the native proteins. Both chitinases also degraded a RET (resonance energy transfer) based bifunctionalized chitinpentaose substrate in a similar manner as reported for some putative exochitinases in the glycosyl hydrolase family 18, offering a sensitive way to assay their activities. We further demonstrated that Chit42 can also be displayed on E. coli surface and the enzymatic activity can be measured directly from the whole cells using methylumbelliferyl-chitinbioside as a substrate. The periplasmic expression and the surface display of Chit42, both offer a suitable expression system for protein engineering and activity screening in a microtiter plate scale. As a first mutagenesis approach we verified the essential role of the two carboxylic acid residues E172 (putative proton donor) and D170 (putative stabilizer) in the catalytic mechanism of Chit42, and additionally the role of the carboxylic acid E145 (putative proton donor) in the catalytic mechanism of Chit33.  相似文献   

9.
The attack of fungal cell walls by plant chitinases is an important plant defense response to fungal infection. Anti-fungal activity of plant chitinases is largely restricted to chitinases that contain a noncatalytic, plant-specific chitin-binding domain (ChBD) (also called Hevein domain). Current data confirm that the race-specific elicitor AVR4 of the tomato pathogen Cladosporium fulvum can protect fungi against plant chitinases, which is based on the presence of a novel type of ChBD in AVR4 that was first identified in invertebrates. Although these two classes of ChBDs (Hevein and invertebrate) are sequentially unrelated, they share structural homology. Here, we show that the chitin-binding sites of these two classes of ChBDs have different topologies and characteristics. The K(D), DeltaH, and DeltaS values obtained for the interaction between AVR4 and chito-oligomers are comparable with those obtained for Hevein. However, the binding site of AVR4 is larger than that of Hevein, i.e. AVR4 interacts strictly with chitotriose, whereas Hevein can also interact with the monomer N-acetylglucosamine. Moreover, binding of additional AVR4 molecules to chitin occurs through positive cooperative protein-protein interactions. By this mechanism AVR4 is likely to effectively shield chitin on the fungal cell wall, preventing the cell wall from being degraded by plant chitinases.  相似文献   

10.
The marine psychrophilic bacterium Moritella marina, isolated from a sample raised from a depth of 1,200 m in the northern Pacific Ocean, secretes several chitinases in response to chitin induction. A gene coding for an extracellular chitinolytic enzyme was cloned and its nucleotide sequence was determined. The chitinase gene consists of an open reading frame of 1,650 nucleotides and encodes a protein of 550 amino acids with a calculated molecular weight of 60.788 kDa, named MmChi60. MmChi60 has a modular structure consisting of a glycosyl-hydrolase family 18 N-terminal catalytic region as well as a C-terminal chitin-binding domain (ChBD). The new chitinase was purified to homogeneity from the intracellular fraction of Escherichia coli. The optimum pH and temperature of the recombinant MmChi60 were 5.0 and 28 degrees C, respectively. The mode of action of the new enzyme on N-acetylchitooligomers, chitin polymers, and other substrates was examined, and MmChi60 was classified as an endochitinase. Thermal unfolding of MmChi60 was studied using differential scanning microcalorimetry and revealed that the protein unfolds reversibly at 65 degrees C. On the basis of the crystal structure of the chitinase C of Streptomyces griseus, a homology-based 3-D model of the ChBD of the MmChi60 was calculated.  相似文献   

11.
Characterization of two antifungal endochitinases from barley grain   总被引:2,自引:0,他引:2  
A basic chitinase (chitinase T, EC 3.2.1.14, molecular mass 33 kDa, pI 9.8) was isolated and compared with a previously described chitinase (chitinase C, molecular mass 28 kDa, pI 9.7). The two chitinases were isolated in homogeneous form from barley ( Hordeum vulgare L.) Bomi mutant 1508 grains either by two cation exchange steps or by one affinity step followed by cation exchange. Both chitinases are endochitinases with specific activities of 168 and 54 nkat (mg protein)−1 for chitinase T and chitinase C, respectively. Both inhibit the growth of Trichoderma viride efficiently. The lysozyme activity of both chitinases is 104 times lower than that of hen egg-white lysozyme as measured by lysis of cell walls of Micrococcus lysodeikticus . The amino acid composition and two partial amino acid sequences of chitinase T were determined. A 23 residue sequence of the N-terminal domain of chitinase T, which was not present in chitinase C, showed 73% identity with domain B of wheat germ lectin and 65% identity with the N-terminal domain of an endochitinase from bean leaves (deduced from cDNA). A 9 amino acid sequence of a cyanogen bromide fragment of chitinase T was identical with a cDNA deduced sequence of a barley aleurone endochitinase but differed in one residue from chitinase C. Generally, the two grain chitinases have physico-chemical and enzymatic properties similar to the plant leaf chitinases characterized. Both chitinases are localized in the aleurone layer and starchy endosperm of developing and germinating grain, but not in the embryo. The appearance of chitinases T and C at a late state of grain development suggests a role for these enzymes as a defense against fungi in the quiescent and germinating grain.  相似文献   

12.
The profile of chaitinases (EC 3.2.1.14) in mature carrot ( Daucus carota L. cv. Eagle) roots was studied. Multiple chitinase bands (8–10) were observed in native and sodium dodecylsulfate-denaturing polyacrylamide gels. The molecular masses of these chitinases were estimated to be from 20 000 to 40 000. One major chitinase was purified and found to be an acidic protein with pI at 4.3 and a molecular mass of 39 500. The optimum pH for enzymatic activity was around 5 and the optimum temperature was 25°C. The enzyme was stable at pHs below 8 and temperatures below 60°C. The protein did not have a chitin-binding domain, but showed some similarity to the amino acid composition of tobacco class I chitinase. The N-terminal amino acid sequence did not resemble any of the described classes of chitimases. This chitinase did not possess lysozyme activity and showed antifungal activity when tested against Trichoderma sp.  相似文献   

13.
We report the purification of two glycosyl hydrolase family 18 chitinases, Chit33 and Chit42, from the filamentous fungus Trichoderma harzianum and characterization using a panel of different soluble chitinous substrates and inhibitors. We were particularly interested in the potential of these (alpha/beta)(8)-barrel fold enzymes to recognize beta-1,4-galactosylated and alpha-1,3-fucosylated oligosaccharides, which are animal-type saccharides of medical relevance. Three-dimensional structural models of the proteins in complex with chito-oligosaccharides were built to support the interpretation of the hydrolysis data. Our kinetic and inhibition studies are indicative of the substrate-assisted catalysis mechanism for both chitinases. Both T. harzianum chitinases are able to catalyze some transglycosylation reactions and cleave both simple chito-oligosaccharides and synthetically modified, beta-1,4-galactosylated and alpha-1,3-fucosylated chito-oligosaccharides. The cleavage data give experimental evidence that the two chitinases have differences in their substrate-binding sites, Chit42 apparently having a deeper substrate binding groove, which provides more tight binding of the substrate at subsites (-2-1-+1+2). On the other hand, some flexibility for the sugar recognition at subsites more distal from the cleavage point is allowed in both chitinases. A galactose unit can be accepted at the putative subsites -4 and -3 of Chit42, and at the subsite -4 of Chit33. Fucose units can be accepted as a branch at the putative -3 and -4 sites of Chit33 and as a branch point at -3 of Chit42. These data provide a good starting point for future protein engineering work aiming at chitinases with altered substrate-binding specificity.  相似文献   

14.
微生物几丁质酶研究进展   总被引:12,自引:0,他引:12  
微生物几丁质酶不仅在生物降解几丁质方面起着重要作用,而且可通过水解病原真菌的细胞壁而有效地抑制其生长。到目前为止,人们已经分离和克隆出了大量的微生物几丁质酶及其基因。尽管这些几丁质酶各不相同,但它们却具有类同的蛋白质结构域:信号肽、催化结构域和几丁质结合结构域等。本文着重介绍几丁质酶的结构和分子特征、表达和调控机理,并且分析了该酶的应用前景。  相似文献   

15.
Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.  相似文献   

16.
We have purified two 28-kDa chitinases, designated Chitinase A (Chit A) and Chitinase B (Chit B), from maize seeds to homogeneity and isolated cDNA clones encoding these two enzymes using an oligonucleotide probe based on an amino acid sequence of a peptide derived from Chit A. Although these two enzymes share 87% homology in their amino acid sequences, which were deduced from the nucleotide sequences of the isolated cDNA clones, they are significantly different in their biochemical and in vitro antifungal activities. When tested in vitro for antifungal activity against the growth of Trichoderma reesei, Alternaria solani, and Fusarium oxysporum, Chit A showed greater antifungal activity than Chit B. The specific activity of Chit A was determined to be 3-fold higher than that of Chit B. Chit A also had a 10-fold lower binding constant (Kd) against the substrate analogue N,N',N',N'-tetraacetyl chitotetrose than Chit B, indicating that the two enzyme may differ in their affinities for binding to the substrate chitin. Comparison of the amino acid sequences of maize seed chitinases with those of previously published chitinases from monocot and dicot plants indicates that maize seed chitinases have diverged significantly from other chitinases.  相似文献   

17.
18.
Pseudomonas sp. strain TXG6-1, a chitinolytic gram-negative bacterium, was isolated from a vegetable field in Taixing city, Jiangsu Province, China. In this study, a Pseudomonas chitinase C gene (PsChiC) was isolated from the chromosomal DNA of this bacterium using a pair of specific primers. The PsChiC gene consisted of an open reading frame of 1443 nucleotides and encoded 480 amino acid residues with a calculated molecular mass of 51.66 kDa. The deduced PsChiC amino acid sequence lacked a signal sequence and consisted of a glycoside hydrolase family 18 catalytic domain responsible for chitinase activity, a fibronectin type III-like domain (FLD) and a C-terminal chitin-binding domain (ChBD). The amino acid sequence of PsChiCshowed high sequence homology (> 95%) with chitinase C from Serratia marcescens. SDS-PAGE showed that the molecular mass of chitinase PsChiC was 52 kDa. Chitinase assays revealed that the chitobiosidase and endochitinase activities of PsChiCwere 51.6- and 84.1-fold higher than those of pET30a, respectively. Although PsChiC showed little insecticidal activity towards Spodoptera litura larvae, an insecticidal assay indicated that PsChiC increased the insecticidal toxicity of SpltNPV by 1.78-fold at 192 h and hastened death. These results suggest that PsChiC from Pseudomonas sp. could be useful in improving the pathogenicity of baculoviruses.  相似文献   

19.
Entomopathogenic fungi are currently being used for the control of several insect pests as alternatives or supplements to chemical insecticides. Improvements in virulence and speed of kill can be achieved by understanding the mechanisms of fungal pathogenesis and genetically modifying targeted genes, thus improving the commercial efficacy of these biocontrol agents. Entomopathogenic fungi, such as Beauveria bassiana, penetrate the insect cuticle utilizing a plethora of hydrolytic enzymes, including chitinases, which are important virulence factors. Two chitinases (Bbchit1 and Bbchit2) have previously been characterized in B. bassiana, neither of which possesses chitin-binding domains. Here we report the construction and characterization of several B. bassiana hybrid chitinases where the chitinase Bbchit1 was fused to chitin-binding domains derived from plant, bacterial, or insect sources. A hybrid chitinase containing the chitin-binding domain (BmChBD) from the silkworm Bombyx mori chitinase fused to Bbchit1 showed the greatest ability to bind to chitin compared to other hybrid chitinases. This hybrid chitinase gene (Bbchit1-BmChBD) was then placed under the control of a fungal constitutive promoter (gpd-Bbchit1-BmChBD) and transformed into B. bassiana. Insect bioassays showed a 23% reduction in time to death in the transformant compared to the wild-type fungus. This transformant also showed greater virulence than another construct (gpd-Bbchit1) with the same constitutive promoter but lacking the chitin-binding domain. We utilized a strategy where genetic components of the host insect can be incorporated into the fungal pathogen in order to increase host cuticle penetration ability.  相似文献   

20.
We have previously isolated a Brassica juncea cDNA encoding BjCHI1, a novel chitinase with two chitin-binding domains, and have shown that its mRNA is induced by wounding and methyl jasmonate treatment (K.-J. Zhao and M.-L. Chye, Plant Mol. Biol. 40 (1999) 1009–1018). By the presence of two chitin-binding domains, BjCHI1 resembles the precursor of UDA (Urtica dioica agglutinin) but, unlike UDA, BjCHI1 retains its chitinase catalytic domain after post-translational processing. Here, we indicate the role of BjCHI1 in plant defense by demonstrating its mRNA induction upon Aspergillus niger infection or caterpillar Pieris rapae (L.) feeding. To further investigate the biological properties of BjCHI1, we transformed tobacco with a construct expressing the BjCHI1 cDNA from the CaMV 35S promoter. Subsequently, we purified BjCHI1 from the resultant transgenic R0 plants using a regenerated chitin column followed by fast protein liquid chromatography (FPLC). Also, the significance of the second chitin-binding domain in BjCHI1 was investigated by raising transgenic tobacco plants expressing BjCHI2, a deletion derivative of BjCHI1 lacking one chitin-binding domain. Colorimetric chitinase assays at 25 °C, pH 5, showed no significant differences between the activities of BjCHI1 and BjCHI2, suggesting that chitinase activity, due to the catalytic domain, is not enhanced by the presence of a second chitin-binding domain. Both BjCHI1 and BjCHI2 show in vitro anti-fungal activity toward Trichoderma viride, causing reductions in hyphal diameter, hyphal branching and conidia size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号