首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

2.
In a survey of eight lake systems located in north-central Florida, total zooplankton abundance showed a strong positive correlation (r2=0.87, a=0.01) with trophic state. Zooplankton abundance averaged 1.0 × 105 organisms · m–2 in oligotrophic systems and up to 8.2 × 105 organisms · m–2 in the eutrophic systems. Seasonal variations in total abundance were greatest in the eutrophic lakes where rotifers dominated and periodically produced sharp population peaks (approaching 2.0 × 106· m–2). In contrast, the more oligotrophic systems had relatively stable levels of total abundance and were dominated by copepods. Diversities of the major taxa in the lakes were variable with one to three species of copepods, zero to four species of cladocera, and two to seven species of rotifers dominant at any one time. Planktonic cladoceran communities were often composed of only one or two species. Low cladocera diversity in these subtropical systems was suggestive of increased predation pressure on this group of crustaceans. A comparison of the total crustacean abundance in the Florida systems to those of some of the Great Lakes indicated that lower standing crops of crustacean zooplankton in the Florida lakes may be a response to both predation and temperature.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.  相似文献   

3.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

4.
The drift of zooplankton (rotifers, cladocerans, cyclopoid copepods) and microscopical zoobenthos (mainly bdelloid rotifers and small chironomid larvae) was investigated by filtering samples of river water. The number of drifting benthic rotifers varied between 1 000 and 6 000 ind. m–3 in the lake inlet, and between 30 and 500 ind. m–3 in the lake outlet, without any seasonal trend. The number of drifting insect larvae was approx. equal in the lake inlet and outlet, with a maximum in summer (250–300 ind. m–3) and minimum in winter (ca. 10 ind. m–3). Increasing water flow resulted in an increasing number of drifting zoobenthos. Downstream from the lake, the number of drifting benthic rotifers was increasing from approx. 300 ind. m–3 in the outlet to 6 500 ind. m–3 3.4 km downstream, while the number of insect larvae was ca. 100 ind. m–3 in the outlet and leveled off at approx. 300 ind. m–3 after 200 m. The number of drifting zooplankton in the lake outlet varied between 20 and 2 000 ind. m–3 for crustaceans, and between 300 and 20 000 ind. m–3 for rotifers, both with a maximum in late summer/autumn and a minimum in winter. The number of drifting zooplankton decreased by some 45% in the first 200 m from the lake outlet, but some zooplankton was still found in the drift 3.4 km downstream. The largest species was removed first from the drift. The diurnal variation in the number of drifting zooplankton in lake outlets appear to be related to the vertical migration in the lake, i.e. the largest number drifting when most animals are in the upper water layers.Contribution from the Voss Project, University of OsloContribution from the Voss Project, University of Oslo  相似文献   

5.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

6.
The seasonal variation in primary production, individual numbers, and biomass of phyto- and zooplankton was studied in the River Danube in 1981. The secondary production of two dominant zooplankton species (Bosmina longirostris and Acanthocyclops robustus) was also estimated. In the growing season (April–Sept.) individual numbers dry weights and chlorophyll a contents of phytoplankton ranged between 30–90 × 106 individuals, l–1, 3–12 mg l–1, and 50–170 µg l–1, respectively. Species of Thalassiosiraceae (Bacillariophyta) dominated in the phytoplankton with a subdominance of Chlorococcales in summer. Individual numbers and dry weights of crustacean zooplankton ranged between 1400–6500 individuals m–3, and 1.2–12 mg m–3, respectively. The daily mean gross primary production was 970 mg C m–3 d–1, and the net production was 660 mg C m–3 d–1. Acanthocyclops robustus populations produced 0.2 mg C m–3 d–1 as an average, and Bosmina longirostris populations 0.07 mg C m–3 d–1. The ecological efficiency between phytoplankton and crustacean zooplankton was 0.03%.  相似文献   

7.
The littoral zone of Lake Balaton and its periphyton-zooplankton-fish communities have been investigated intensively in recent years. Total average number of crustacean plankton varied from 36 to 126 ind l–1, their biomass from 0.49 to 1.86 mg ww l–1 month–1 at different areas of the littoral zone. In general, these values for the above parameters were higher in hypertrophic areas. 23 fish species occurred in the littoral zone with cyprinids dominating. The seasonal food spectra of Y-O-Y roach (Rutilus rutilus), white bream (Blicca bjoerkna) and bream (Abramis brema) were based mainly on planktonic crustaceans and benthic/periphytic invertebrates. According to the frequency of occurrence of crustaceans and other invertebrates, the food composition of young cyprinids differed significantly in the NE and SW-basins of the lake.  相似文献   

8.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

9.
The production of planktonic rotifers was studied in eutrophic Lake Ormajärvi. Of the total annual production of rotifers (2.9 g org. C m–2 or 231 mg dry weight m–3) 49% was achieved during one month (July) and 88% during 3 months of summer. The most important producers were Keratella cochlearis (1.2 g C m–2), Asplanchna priodonta (0.8 g C m–2) and Conochilus unicornis (0.6 g C m–2). The P/B ratio for the total rotifer community during the growing season (7 months) was 25.0; monthly P/ B values varied between 0.3 and 5.2. The daily P/ B values were highest among species of Collotheca. The relationships of rotifers to some biotic and abiotic factors (invertebrate predators — Mesocyclops, Cladocera, planktonic Protozoa and temperature) are briefly discussed.  相似文献   

10.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

11.
Spatial and seasonal patterns in phytoplankton and zooplankton communities of Lake St. Clair from June through September, 1984 are described. Phytoplankton biomass averages 586 µg l-1 with the Diatomae and Chrysophyceae predominating. Zooplankton biomass averages 663 µg l- with small bosminid Cladocera being the most abundant organisms. Lake St. Clair zooplankton biomass is second only to that of Lake Erie amongst the St. Lawrence Great Lakes. Biomass size spectra are typical in structure for mesotrophic lakes but low explained variance in the annual normalized spectrum is indicative of a perturbed system. Since 1972/1973 there appears to have been a slight decrease in zooplankton abundance in the lake accompanied by a shift from dominance of rotifers to dominance of cladocerans. We hypothesize that high flushing rate and seasonal variability coupled with contaminant loadings have resulted in a plankton community reduced in taxonomic diversity and dominated by small-bodied species.  相似文献   

12.
An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m-2, and lake water (containing ca. 190 g m-2 of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21–56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the (bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.  相似文献   

13.
Trichoderma reesei Rut-C30 is a highly derepressed mutant which synthesised active cellulases in culture media containing glucose and lactose as the only carbon sources. The maximum biomass, filter paper and specific filter paper activities for cell growth on 20 g glucose l–1 were 20 g dry cell wt l–1, 1.9 FPU ml–1 and 4.8 FPU mg–1 protein respectively, while on 40 g glucose l–1 were 25 g dry cell wt l–1, 4.5 FPU ml–1 and 6.2 FPU mg–1 protein, respectively. This strain had a higher specific filter paper activity (6.2 FPU mg–1 protein) than was produced by other T. reesei mutants (3.6 FPU mg–1 protein).  相似文献   

14.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

15.
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l−1) and biomass (5.2 mg l−1) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0–100 mg l−1 (r = −0.82, P< 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.  相似文献   

16.
Olsson  Håkan  Blomqvist  Peter  Olofsson  Hans 《Hydrobiologia》1992,(1):147-155
Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l–1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l–1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.  相似文献   

17.
About 650 zooplankton samples were collected from Lake Inarijärvi in 1977–1979 from the littoral and pelagial zones of the lake. One hundred and twenty-three zooplankton taxa were found and most of them can be considered euplanktonic.The most important species were Holopedium gibberum, Daphnia cristata, Cyclops spp. and Eudiaptomus spp. Mean pelagial zooplankton biomass was 0.29 g m–3 in the 0–5 m depth zone, 0.17 g m–3 in 5–10 m and 0.11 g m–3 in 10–20 m.The zooplankton biomass at a sandy shore was about 0.09 g m–3, at a stony shore 0.05 g m–3 and at a vegetated shore 0.76 g m–3. About 70% of the whole zooplankton production consisted of crustaceans.The sum of herbivore and carnivore zooplankton production in the pelagial area during the summer was 210–330 kg ha–1 × 3 months.  相似文献   

18.
R. D. Gulati 《Hydrobiologia》1990,191(1):173-188
A five-year zooplankton study (1982–86) on three shallow and highly eutrophic lakes in the Loosdrecht area (The Netherlands) did not reveal any significant changes following the considerable reduction in external P-loading (from about 1.0 g to 0.3 g P m–2 year–1) since mid-1984.The recent annual fluctuations in the rotifer and crustacean densities are within the range of those found before the restoration measure became operative. A decrease in the average size of the crustaceans and an absence of large-bodied forms reflects an increased fish predation rather than a change in the quality or quantity of their sestonic food ( < 150 µm) which continues to be dominated by filamentous cyanobacteria and Prochlorothrix hollandica, a prochlorophyte discovered in these lakes recently.  相似文献   

19.
Walker Lake is a monomictic, nitrogen-limited, terminal lake located in western Nevada. It is one of only eight large (Area>100 km2, Z { mean}>15 m) saline lakes of moderate salinity (3–20 g l–1) worldwide, and one of the few to support an endemic trout fishery (Oncorhynchus clarki henshawi). As a result of anthropogenic desiccation, between 1882 and 1996 the lake's volume has dropped from 11.1 to 2.7 km3 and salinity has increased from 2.6 to 12–13 g l–1. This study, conducted between 1992 and 1998, examined the effects of desiccation on the limnology of the lake. Increases in salinity over the past two decades caused the extinction of two zooplankton species, Ceriodaphnia quadrangula and Acanthocyclops vernalis. Recent increases in salinity have not negatively affected the lake's dominant phytoplankton species, the filamentous blue-green algae Nodularia spumigena. In 1994 high salinity levels (14–15 g l–1) caused a decrease in tui chub minnow populations, the main source of food for Lahontan cutthroat trout, and a subsequent decrease in the health of stocked trout. Lake shrinkage has resulted in hypolimnetic anoxia and hypolimnetic accumulation of ammonia (800–2000 g-N l–1) and sulfide (15 mg l–1) to levels toxic to trout. Internal loading of ammonia via hypolimnetic entrainment during summer wind mixing (170 Mg-N during a single event), vertical diffusion (225–500 Mg-N year–1), and fall destratification (540–740 Mg-N year–1) exceeds external nitrogen loading (<25 Mg-N year–1). Increasing salinity in combination with factors related to hypolimnetic anoxia have stressed trout populations and caused a decline in trout size and longevity. If desiccation continues unabated, the lake will be too saline (>15–16 g l–1) to support trout and chub fisheries in 20 years, and in 50–60 years the lake will reach hydrologic equilibrium at a volume of 1.0 km3 and a salinity of 34 g l–1.  相似文献   

20.
Hessen  Dag O.  Faafeng  Bj&#;rn A.  Brettum  P&#;l 《Hydrobiologia》2003,491(1-3):167-175
A survey on phytoplankton:zooplankton biomass ratios was performed in 342 Norwegian lakes, covering a wide range in lake size and productivity (total phosphorus: 3–246 g l–1), but with most localities being oligo- to mesotrophic. Mean phytoplankton biomass was 88 g C l–1, yet with the majority below 50 g C l–1and a median of 25 g C l–1. Total zooplankton biomass displayed a mean and median of 37 and 26 g C l–1, respectively. Cladocerans were by far the dominant group, making up a median of almost 60% of total zooplankton biomass. Total zooplankton biomass as well as that of major aggregated metazoan taxa (cladocerans, calanoid copepods, cyclopoid copepods and rotifers) all showed a positive, but weak correlation with total phytoplankton biomass. These weak correlations suggest that algal biomass per se is a poor predictor of zooplankton biomass. An average phyto-:zooplankton biomass ratio (C:C) of 2.8 (SD±4.7) was found. 30% of the lakes had a phyto-:zooplankton biomass ratio below unity. While there was no correlation between the phyto-:zooplankton biomass ratio with increasing productivity in terms of P concentration, there was a higher biomass ratio in lakes with high fish predation pressure. The low ratio of phyto-:zooplankton biomass suggest major requirements from non-algal sources of C in the zooplankton diet. The need for dietary subsidizing is also supported by the fact that more than 75% of the lakes had algal biomass less than the estimated threshold for net positive growth of zooplankton, although it should be kept in mind that a high share of picoplankton would imply an underestimation of autotroph biomass in these lakes. Since the C-deficiency apparently is most pronounced in oligotrophic systems, it contradicts the view that the detritus pathways plays a predominant role in highly productive systems only, but while the source of detritus probably is mostly of autochthonous origin in eutrophic lakes, allochthonous detritus will be more important in oligotrophic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号