首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L. Arvola 《Hydrobiologia》1983,101(1-2):105-110
Primary production and phytoplankton in polyhumic lakes showed a very distinct seasonal succession. A vigorous spring maximum produced by Chlamydomonas green algae at the beginning of the growing season and two summer maxima composed mainly of Mallomonas caudata Iwanoff were typical. The annual primary production was ca. 6 g org. C · m–2 in both lakes. The mean epilimnetic biomass was 1.1 in the first lake and 2.2 g · m–2 (ww) in the second one. The maximum phytoplankton biomass, 14 g · m–2, was observed during the vernal peak in May.  相似文献   

2.
Variation in the carbon content of two Asplanchna species   总被引:3,自引:3,他引:0  
The rotifers of the genus Asplanchna were sampled four times during the summer from eight lakes of different types. The mean individual carbon content in the population varied between 0.15–0.66 µg C ind.-1 (n = 21) for A. priodonta and 1.0–1.6 µg C ind.-1 (n = 3) for A. herricki. The carbon content and the size of A. priodonta varied considerably between the populations of both different lakes and dates.The carbon level of both Asplanchna species (sample mean 0.2–1% of wet weight) was considerably lower than is generally found for rotifers. Much of the variation of carbon level could be explained by an inverse relationship with wet weight. The high variation in the carbon content of individuals suggests that Asplanch population may adapt their mean body size to fit prevailing environmental conditions.  相似文献   

3.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

4.
Castillo  María M. 《Hydrobiologia》2000,437(1-3):57-69
Seasonal fluctuation in river stage strongly affects the ecological functioning of tropical floodplain lakes. This study was conducted to assess the influence of hydrological seasonality on bacterial production and abundance in two floodplain lakes of the Autana River, a blackwater river in the Middle Orinoco basin, Venezuela. Water samples for nutrient chemistry, chlorophyll a, and microbiological determinations were collected in two floodplain lakes and in the mainstem of the river during 1997–98. DOC and chlorophyll a concentrations were similar between mainstem and lake sites during high water when river and lakes were well connected but became different during the period of low water when the interaction was minimal. Higher values of bacterial production were observed in the floodplain lakes (0.62–1.03 g C l–1 h–1) compared to the mainstem sites (0.17–0.19 g C l–1 h–1) during the period of low water, while during the period of high water river and lake sites showed similar levels (0.04 g C l–1 h–1). Bacterial numbers followed bacterial production in the floodplain lakes, reaching higher numbers during the period of low water (1.41–2.40 × 106 cells ml–1). Availability of substrate and inorganic nutrients, pH, and inputs and losses of bacterial cells could be determining the observed seasonal patterns in bacterial production and abundance. The Autana lakes exhibited a strong seasonal pattern in the chemical and biological conditions, showing higher productivity during the lentic phase that lasted between 5 and 6 months.  相似文献   

5.
Primary production of phytoplankton and standing crops of zooplankton and zoobenthos were intensively surveyed in Lake Teganuma during May 1983–April 1984. The annual mean chlorophyll a concentrations were as high as 304 µg · l–1–383 µg · l–1. The daily gross primary production of phytoplankton was high throughout the year. The peak production rate was recorded in August and September, when blue-green algae bloomed. The annual gross primary production was estimated as 1450 g C · m–2 · y–1, extremely high as compared with other temperate eutrophic lakes. Zooplankton was predominantly composed of rotifers. The annual mean standing crop of zooplankton was 0.182 g C · m–2 around the middle between the inlets and the outlet and was lower than in most other temperate eutrophic lakes. Zoobenthos was mostly composed of Oligochaeta and chironomids. The annual mean standing crop of zoobenthos ranged from 0.052 g C · m–2 to 0.265 g C · m–2, the lowest values among temperate eutrophic lakes, which is in contrast to the high primary production.  相似文献   

6.
Seasonality of phytoplankton in some South Indian lakes   总被引:2,自引:2,他引:0  
A. R. Zafar 《Hydrobiologia》1986,138(1):177-187
The landscape of South India is dotted with innumerable man-made lakes. They differ vastly in age, physiography, water flow characteristics, chemistry and trophic state, yet maintain a phytoplankton overwhelmingly dominated (43–93%) by blue-green algae; the subdominants are diatoms and/or Chlorococcales and euglenoids. The blue-greens apparently reach them from soils which are known to harbour a rich blue-green flora and several species in common with limnoplankton.South Indian lakes resemble some tropical counterparts in sustaining dense phytoplankton populations all the year round and temperate dimictic ones in showing two annual growth peaks that usually occur in summer (February–May) and the post-monsoon period (October–November), in synchrony with rise in temperature. In the chemically more oligotrophic lakes, the peaks are constituted by Raphidiopsis mediterranea Skuja, Navicula cryptocephala Kütz., Melosira granulata (Ehr.) Ralfs, and others and in hypereutrophic lakes by Microcystis aeruginosa Kütz., Synechocystis aquatilis Sauv., Oscillatoria spp., Burkillia coronata West & West and Euglena acus Ehr. The bimodal seasonality in abundance of phytoplankton reflects in chlorophyll and biomass concentrations although these are not in strict synchrony with each other. At the maxima chlorophyll a and over-dry biomass may rise to 8.5 mg l–1 and 204 mg l–1 respectively in highly productive waters. The highest rate of carbon assimilation recorded in such phases is 10.6 g C m–3 d–1.  相似文献   

7.
In autumn 1986, six small lakes at different stages of acidification were stocked with one-summer-old whitefish, Coregonus pallasi Valenciennes 1848, in order to see whether whitefish stocking would be a suitable method for the mitigation of acidification effects. In two of the lakes the introduction was a complete failure: the whitefish did not survive, evidently due to high acidity and high aluminium concentrations of the lake waters. In one of the most acidified lakes (pH 4.3–4.8, Allab 29–125 g 1–1) and in two less acidic lakes (pH 5.0–5.2 and 5.4–6.4), introduction was successful. Three years after the introduction, the mean weights of the fish in those three lakes were 580, 250 and 360 g respectively, with the weight and also the condition factor of stocked whitefish being highest in the most acidified lake. In that lake there were few or no fish present during the introduction, whereas in the less acid lakes there were dense populations of perch and therefore a potential interspecific competition for food. Different availability of food in the lakes was presumed to be the main reason for the growth differences. Plasma Na+ and Cl concentrations of whitefish were lower in the acidic lakes than in the lake with pH around 6 three years after stocking. This suggests that, despite the good growth and highest condition factor of whitefish in the most acid lake, the fish still experienced some acid stress.  相似文献   

8.
Concentrations of total phosphorus (TP), inorganic and organic nitrogen, organic matter, and chlorophyll-a were studied in ten mountain lakes at various stages of acidification, trophy, and type of watershed during each July and October from 1987 to 1990. Concentrations of TP and total organic matter were higher in July than in October. Concentrations of NH44 +-N decreased and NO3 -N increased from July to October. The relative composition of total nitrogen (TN) and its concentration were strongly dependent on the type of watershed: the lowest TN concentrations were observed in lakes with forested watersheds, increasing above the timberline and reaching maximum values in acidified lakes with rocky watersheds. In the pool of TN, nitrate was most important in lakes above the timberline (70–86% of TN), and organic nitrogen in forest lakes (> 90% of TN). Lakes with rocky watersheds were characterized by high ratios of TN:TP (> 250 by mass). The concentration of chlorophyll-a varied widely, from 0.01 to 22.6 µg l–1, without any consistent change between July and October, and were P limited.  相似文献   

9.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

10.
Summary The plankton of twelve freshwater and slightly saline lakes in the Vestfold Hills, Antarctica was sampled in February 1991. All of the lakes are oligotrophic. The chlorophyll a concentrations in the lakes ranged from 0.10–2.69 g · 1–1. The majority of the phytoplankton were flagellates or picoplanktonic cyanobacteria with the species composition varying between the lakes. Cyanobacteria were found in five of the lakes. Five to 6 species of ciliated protozoa occurred, among them oligotrichs, including the mixotrophic species Strombidium viride. The concentrations of protists and bacteria were an order to several orders of magnitude lower than reported from lower latitude oligotrophic lakes. Low species diversity and low numbers in the plankton characterise these eastern Antarctica lakes which reflects their low nutrient status and isolation.  相似文献   

11.
Georg Wolfram 《Hydrobiologia》1996,318(1-3):103-115
From July 1990 to July 1991 the benthic community of the open water zone of Neusiedler See, one of the largest shallow lakes in central Europe, was studied with special reference to the chironomids. Only 16 spp. of chironomids inhabited the sediment of the open water zone. The numerically dominant species were Tanypus punctipennis, Procladius cf. choreus, Microchironomus tener and Cladotanytarsus gr. mancus. Most invertebrates showed a distinct horizontal distribution. Species richness and abundance were highest on muddy and organically rich substrates near the reed belt. Chironomid densities in this area reached 54,000 ind m–2 and biomass was 2.0 g dw m–2. The two tanypod species accounted for more than 90% of the standing stock of the macrozoobenthos near the reed belt. The sediment of the open lake and of the eastern part of Neusiedler See was composed of compact clay and sand as a result of the erosion of fine material due to strong waves and currents. Individual densities in these areas were much lower. Production of the numerically dominant species T. punctipennis was estimated using the increment-summation method, whereas production of the remaining species was estimated using an empirically derived multiple regression. Mean annual production of chironomids exceeded 6 g dw m–2 yr–1 near the reed belt, but it reached only 0.55 g dw m–2 yr–1 in the open lake. These values are rather low compared with other lakes and can be explained by unfavourable sediment conditions due to wave action and by physiological stress due to the water chemistry.  相似文献   

12.
Twentyfive cyanobacterial blooms in Lake Ladoga and adjacent water bodies were studied in the summer of 1990–1992. Toxicity of the water bloom material for mice was detected in 9 cases. The maximal tolerable doses (MTD) of the material extracted from biomass varied within 3–30 mg kg–1 mouse body weight; 50% lethal doses (LD50) were within 45–125 mg kg–1. Toxic water blooms were registered in Karelian lakes and in the Neva Bay, Gulf of Finland. Cyanobacterial samples collected on the eastern coast of Lake Ladoga proved to be non-toxic. The species identified in toxic bloom material included Anabaena circinalis, A. flos-aquae, A. lemmermannii, Anabaena sp., Aphanizomenonflos-aquae, Gloeotrichia echinulata, G. pisum, Microcystis aeruginosa and Oscillatoria sp. These data suggest that toxic forms of cyanobacteria are widespread in Karelian lakes belonging to the drainage basin of Lake Ladoga.  相似文献   

13.
Seasonal succession of the phytoplankton in the upper Mississippi River   总被引:1,自引:1,他引:0  
Species composition and seasonal succession of the phytoplankton were investigated on the upper Mississippi River at Prairie Island, Minnesota, U.S.A. Both the numbers and volume of individual species were enumerated based on cell counts with an inverted microscope. A succession similar to algal succession in the local lakes occurred. The diatoms were dominant during the spring and fall and blue-green algae were dominant during the summer. The algal concentrations have increased up to 40 fold the concentrations of the 1920's, since the installation of locks and dams. The maximum freshweight standing crop was 4 mg · l–1 in 1928 (Reinhard 1931), 13 mg · l–1 in 1975 a wet year, and 47 mg · l–1 in 1976, a relatively dry year with minimal current discharge. The diatoms varied from 36–99%, the blue-green algae from 0–44% and the cryptómonads from 0–50% of the total standing crop. The green algae were always present but never above 21% of the biomass. The dominant diatoms in recent years were centric -Stephanodiscus andCyclotella spp. (maximum 50,000 ml–1). The dominant blue-green algae wereAphanizomenon flos-aquae (L.) Ralfsex Born.et Flahault andOscillatoria agardhii Gomont (maximum 800 ml–1). These algal species are also present in local lakes. Shannon diversity values indicated greatest diversity of algae during the summer months.  相似文献   

14.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

15.
Milbrink  Göran  Timm  Tarmo  Lundberg  Stefan 《Hydrobiologia》2002,468(1-3):53-61
Fifty-seven small- to middle-size lakes of Sweden (size-range from <0.1 to about 200 km2) representing different regions and lake-types were selected for the purpose of demonstrating the indicative value of profundal oligochaete communities also of relatively small lakes. It is well known since previously that profundal oligochaete assemblages of large lakes in Europe may be particularly indicative of the current trophic situation, but little has been known about smaller lakes in this respect. Characterizations based on oligochaete community structure in these lakes could be summarized in eight different groups: Characteristic oligochaete communities in oligotrophic lakes of relatively small size are Spirosperma ferox, Stylodrilus heringianus and Tubifex tubifex. Oligochaete species richness is low (1–3 species) and so is species abundance (<300 specimens m–2). Very eutrophic lakes of the same size-range are largely dominated by the tubificids Limnodrilus hoffmeisteri and/or Potamothrix hammoniensis. Substitute or complementary species may be T. tubifex. Species richness is usually low (1–3 species), but abundance is high to very high (>5000 specimens m–2). Mesotrophic to moderately eutrophic lakes of the same size categories contain more species than the above extremes, most of them being fairly tolerant to oxygene deficiency such as Tubifex ignotus, a number of species of the genera Aulodrilus and Limnodrilus and a variety of so-called Ponto-Caspian Potamothrix species, most of them having recently invaded south-eastern Sweden. Species richness is moderate to high (4–8 species), while abundance may vary considerably (range from about 300 to about 5000 specimens m–2). In this respect, small- to middle-size lakes do not differ much from larger lakes. For the trophic characterization of lake water the mean concentrations of total-phosphorus (in g l–1) is generally regarded to be the most appropriate measure. The match between characterizations based upon oligochaete community structure and total-phosphorus concentrations is generally very good for large lakes. The present study shows that this applies fairly well also to the majority of the small- to middle-size lakes selected for this study. This has not been shown before. Obvious deviations from this rule could be caused by a scarcity of reliable chemical data, or considerable seasonal shifts in the chemical composition ot the water, which in its turn may be caused by short water residence time. Littoral elements in the fauna, which are generally less indicative, or effects of local inflows may also be more frequent here than in lakes of larger size.  相似文献   

16.
There are over one hundred mineralized lakes in Khakasia with areas in excess of 0.01 km2 including periodically dry lakes. These saline lakes are situated within the Chebakovo-Balakhtinskaya and Yuzhno-Minusinsk depressions of the Minusinsk intermontane trough, bounded by Kuznetsk Alatau, Western and Eastern Sayan mountains. The depressions are characterised by steppe landscape, low topographic relief and an arid climate (annual rainfall ca. 300 mm y–1). The mineralisation of the various lakes ranges from some 2 to 150 g l–1. Mg++, Na+ and Ca++ cations, SO4 = and Cl anions dominate the composition of soluble salts. The degree of variation of the lakes' mineralisation increases in dry periods. The majority of lakes are associated with synclinal structures and terrigenous red-bed Upper Devonian clastic deposits which bear indicators of accumulation in an evaporite environment (the presence of gypsum layers). Some mineral lakes are situated in Carboniferous carbonate-terrigenous deposits, containing scattered pyroclastics and features of evaporite sedimentation. The high salinity of the lakes is explained (i) by the availability of readily soluble minerals in Palaeozoic strata (gypsum, anhydrite, halite and others), which may be dissolved in groundwater and transported to lake catchments, and (ii) by the high degree of surface water evaporation due to the arid climate. The mineralized waters of some lakes can be recommended for balneological purposes. A deterioration is noted in the ecological status of some saline lakes due to anthropogenic contamination.  相似文献   

17.
Walker Lake is a monomictic, nitrogen-limited, terminal lake located in western Nevada. It is one of only eight large (Area>100 km2, Z { mean}>15 m) saline lakes of moderate salinity (3–20 g l–1) worldwide, and one of the few to support an endemic trout fishery (Oncorhynchus clarki henshawi). As a result of anthropogenic desiccation, between 1882 and 1996 the lake's volume has dropped from 11.1 to 2.7 km3 and salinity has increased from 2.6 to 12–13 g l–1. This study, conducted between 1992 and 1998, examined the effects of desiccation on the limnology of the lake. Increases in salinity over the past two decades caused the extinction of two zooplankton species, Ceriodaphnia quadrangula and Acanthocyclops vernalis. Recent increases in salinity have not negatively affected the lake's dominant phytoplankton species, the filamentous blue-green algae Nodularia spumigena. In 1994 high salinity levels (14–15 g l–1) caused a decrease in tui chub minnow populations, the main source of food for Lahontan cutthroat trout, and a subsequent decrease in the health of stocked trout. Lake shrinkage has resulted in hypolimnetic anoxia and hypolimnetic accumulation of ammonia (800–2000 g-N l–1) and sulfide (15 mg l–1) to levels toxic to trout. Internal loading of ammonia via hypolimnetic entrainment during summer wind mixing (170 Mg-N during a single event), vertical diffusion (225–500 Mg-N year–1), and fall destratification (540–740 Mg-N year–1) exceeds external nitrogen loading (<25 Mg-N year–1). Increasing salinity in combination with factors related to hypolimnetic anoxia have stressed trout populations and caused a decline in trout size and longevity. If desiccation continues unabated, the lake will be too saline (>15–16 g l–1) to support trout and chub fisheries in 20 years, and in 50–60 years the lake will reach hydrologic equilibrium at a volume of 1.0 km3 and a salinity of 34 g l–1.  相似文献   

18.
The mass balance for total nitrogen (N) was studied over a four-year period in 16 shallow mainly eutrophic 1st order Danish lakes. Water was sampled in the main inlet of each lake 18–26 times annually, and from the outlets and the lake 19 times annually. Water was also sampled from minor inlets, although less frequently. N input and output were calculated using daily data on discharge (Q), the latter being obtained either from the Q/H relationship based on automatic recordings of water level (H) for the main in- and outlet, or by means of Q/Q relationships for the minor inlets. Annual mean N retention in the lakes ranged from 47 to 234 mg N m–2 d–1, and was particularly high in lakes with high N loading. Annual percentage retention (N ret y%) ranged from 11 to 72%. Non-linear regression analysis revealed that hydraulic retention time and mean depth accounted for 75% of the variation in annual mean N ret y% and, in combination with inlet N concentration, accounted for 84% of the variation in the in-lake N concentration. N ret % varied according to season, being higher in the second and third quarter than in the first and fourth quarter (median 18–19%). A simple model was developed for predicting monthly nitrogen retention (N ret m) on the basis of external N loading, the lake water pool of nitrogen N pool , hydraulic loading and lake water temperature. Calibration of only two parameters on data from the randomly selected 8 out of 16 lakes rendered the model capable of accurately simulating seasonal dynamics of the in-lake N concentration and N ret m in all 16 lakes. We conclude that with regard to shallow, eutrophic lakes with a relatively low hydraulic retention time, it is now possible to determine not only annual mean nitrogen retention, but also the seasonal variation in N retm . Prediction of seasonal variation in N loading of downstream N-limited coastal areas is thereby rendered much more reliable.  相似文献   

19.
Zinabu  G. M.  Pearce  Nicholas J. G. 《Hydrobiologia》2003,492(1-3):171-178
Concentrations of heavy metals commonly known to impact the environment and other related trace elements were quantified in the water bodies of nine Ethiopian rift-valley lakes and six rivers (their inflows) as well as in effluents from two factories. In about half of the samples the concentrations of As was 10–700 g l–1 and Se, ranged from 10 to 28 g l–1, were much higher than the maximum permissible level (MPL) according to international standards for drinking water. Mercury (Hg) was detected in four lakes and one river with high values ranging from 2 to 165 g l–1. Concentrations of Mo in three soda lakes were as high as 544–2590 g l–1. Iron (Fe) was found in high concentrations (567–4969 g l–1) in three lakes, which are known to be discolored from inorganic colloids. Levels of Cd, Pb, and Cr ranged between 5 and 9, 12 and 20 and 104 and 121 g l–1, respectively. The rest of the heavy metals analyzed, Ba, Cu, Mn, Ni and Zn, were either not detected in the samples or were found in much lower concentrations than the MPL for drinking water. Effluent from a tannery contained about 15, 141, 523, and 19 g l–1 of As, Cr, Fe, and Se, respectively, and effluent from a textile factory contained high concentrations of As (10.6), Hg (3.8) and Se (20) g l–1. Compared to more industrialized regions and other African lakes the concentrations of heavy metals in Ethiopian rift-valley lakes (with the exception of the soda lakes) and their inflows were low.  相似文献   

20.
Macrozoobenthos of the ultraoligotrophic Lake 95 (61°N, 46°W, 8 ha, zmax=18 m, ) is composed of about 14 taxa dominated by 12 Chironomidae species. Abundance, life cycle, biomass and production were estimated for the six dominant taxa. Abundance declined fromca. 4150 at 2.5 m depth toca. 1400 ind m–2 at 16 m depth and averagedca. 3200 ind m–2 on a lakewide basis. By numbers,Heterotrissocladius changi andH. oliveri dominated the average fauna.H. changi was common at the 2.5 m and 5 m depth stations, whereasH. oliveri dominated from 5 m depth downwards. Chironomids showed mainly a 1-yr life cycle, but apparently bothHeterotrissocladius species had two contemporary cohorts with emergence in midsummer and late autumn/early spring, respectively. Average annual ratio was 4.2 and 4.6 forH. oliveri andH. changi, respectively. Annual production varied from 0.3 g ash-free dry weight (AFDW) m–2 y–1 at 16 m depth to 1.6 g AFDW m–2 y–1 at 2.5 m depthH. changi contributed 45%, fiveMicropsectra spp. 17% andH. oliveri 15% to total average production, which on a lakewide basis wasca. 1.1 g AFDW or 25 kJ m–2 y–1. Lake 95 thus belongs at the very low end of measured lake zoobenthic productions, which range from 10 kJ m–2 y–1 in Arctic lakes toca. 1600 kJ m–2 y–1 in highly eutrophic shallow lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号