首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
The Retinal Homeobox (Rx) gene is essential for vertebrate eye development. Rx function is required for the specification and maintenance of retinal progenitor cells (RPCs). Loss of Rx function leads to a lack of eye development in a variety of species. Here we show that Rx function is also necessary during retinal regeneration. We performed a thorough characterization of retinal regeneration after partial retinal resection in pre-metamorphic Xenopus laevis. We show that after injury the wound is repopulated with retinal progenitor cells (RPCs) that express Rx and other RPC marker genes. We used an shRNA-based approach to specifically silence Rx expression in vivo in tadpoles. We found that loss of Rx function results in impaired retinal regeneration, including defects in the cells that repopulate the wound and the RPE at the wound site. We show that the regeneration defects can be rescued by provision of exogenous Rx. These results demonstrate for the first time that Rx, in addition to being essential during retinal development, also functions during retinal regeneration.  相似文献   

2.
A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application.  相似文献   

3.
Purpose: Photoreceptors cannot regenerate and recover their functions once disordered. Transplantation of retinal pigment epithelium (RPE) has recently become a possible therapeutic approach for retinal degeneration. In the present study, we investigated the induction of photoreceptors by coculturing primate embryonic stem cells (ESCs) with ESC-derived RPE cells. Methods: RPE cells were derived by coculturing ESCs and Sertoli cells. Photoreceptors were then induced by using ESC-derived RPE cells and retinoic acid (RA) Results: RPE cell generation was confirmed by morphological analysis, which revealed highly pigmented polygonal cells with a compact cell-cell arrangement. After coculturing ESCs and RPE cells, some ESC derivatives became immunopositive for rhodopsin. RT-PCR analysis demonstrated the expression of retina-related gene markers such as Pax6, CRX, IRBP, rhodopsin, rhodopsin kinase, and Muschx10A. When RA was added, a distinct increase in the expression of photoreceptor-specific proteins and genes was found. In addition, the differentiation of bipolar horizontal cells was demonstrated by protein and gene expression. The ESCs that were cocultured with RPE cells and treated with RA were transplanted into the renal capsule or intra-vitreal space of nude mice. Grafted ESC derivatives demonstrated extensive rhodopsin expression, and they survived and organized into recipient tissues, although they formed teratomas. Conclusion: These results indicate that coculturing ESCs with ESC-derived RPE cells is a useful and efficient method for inducing photoreceptors and providing an insight into the use of ESCs for retina regeneration.  相似文献   

4.
青光眼视神经损伤的最后共同通路为视网膜神经节细胞的凋亡。但确切机制尚未阐明。为此,人们进行了大量相关体内、体外实验并取得一定成果。本文从凋亡的激发因素、信号传导及基因调控加以阐述。  相似文献   

5.
6.
Vascular endothelial cell growth factor (VEGF) is an endothelial cell-specific angiogenic and permeability-inducing factor that has been implicated in the pathogenesis of diabetic retinopathy. The objectives of this study are to compare VEGF and VEGF receptor expression between retinal and brain-derived endothelial cells cultured in 5 or 30 mM glucose for 5 days. Our results show that expression of cell-surface VEGF receptors, assessed by flow cytometry, is higher in retinal-derived endothelial cells. RT-PCR results show that both retinal and brain-derived endothelial cells express comparable levels and types of VEGF. Exposure to 30 mM glucose for 5 days did not alter levels of VEGF or VEGF receptors. The higher level of VEGF receptor expression in retinal endothelial cells suggests that the retinal microcirculation may be more sensitive to the effects of VEGF and this may contribute to the pathogenesis of diabetic retinopathy.  相似文献   

7.
8.
A fucose-specific lectin from Aleuria aurantia was used to study the dynamics of neuronal membrane glycoproteins. Albino rabbits received vitreal injections of affinity-purified 125I-Aleuria lectin. The radioactive probe was internalized by adsorptive endocytosis into retinal ganglion cells, and transported intact down to the nerve terminals in the contralateral geniculate bodies and superior colliculi. We found that the radiolabeled lectin was transported with at least two distinct rates (I, approximately 205 mm/day; II, approximately 45 mm/day) corresponding to the two rapid phases of anterograde transport of endogenous polypeptides described earlier in this system. This is the first evidence that an exogenous macromolecule may be transported along the axon at more than one velocity.  相似文献   

9.
DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。对DNA损伤与修复的研究是现代分子生物学研究的热点之一。目前,DNA损伤对眼组织细胞凋亡、基因改变、细胞活性的影响已成为眼科疾病研究的热点。在年龄相关性白内障、老年性黄斑病变等眼科疾病的病因研究中证实氧化应激是其主要致病因素,当机体遭受有害刺激导致氧化应激时,机体、组织、细胞受到一系列损伤,而DNA的损伤对氧化应激最为敏感。本文就DNA损伤及其与晶状体上皮细胞及视网膜色素上皮细胞相关性的研究进展作一综述,为眼科疾病的研究以及防治提供新的方法及思路。  相似文献   

10.
Human dental stem or precursor cells can differentiate into multiple cell types like adipocytes, osteoblasts or chondrocytes. Recently, a number of different human dental stem cell lines were differentiated into neurons. This makes dental stem cells interesting as possible cell-based therapeutics for neural degenerative diseases. To test this hypothesis, we have investigated the neural differentiation potential of murine dental follicle precursor cells (mDFPCs). The mDFPC cell line was newly established without cell immortalization. After differentiation, neural cell marker expression in mDFPCs was checked and compared with that of murine retinal progenitor cells (mRPCs). Differentiated mDFPCs became neuron-like cells with small cell bodies and long/branching neurites, similar to differentiated mRPCs. However, mRPCs showed more complete neural differentiation. Furthermore, 5% of the differentiated mDFPCs and 37% of the differentiated mRPCs were positive for the glia cell marker GFAP (glial fibrillary acidic protein). The data presents new evidence of neural differentiation of mDFPCs, but only a small percentage of mDFPCs differentiated into glia cells, unlike mRPCs.  相似文献   

11.
A photoreceptor cell line, designated 661W, was tested for its response to growth factors secreted by retinal pigment epithelial cells including basic fibroblast growth factor, epidermal growth factor, and nerve growth factor. Early passaged 661W cells expressed high levels of retinal progenitor markers such as nestin and Pax6, but not opsin or glial fibrillary acidic protein. 661W cells grown in FGF-2 or EGF exhibited a multiple-process morphology with small phase-bright nuclei similar to neurons, whereas cells cultured in nerve growth factor (NGF) or retinal pigment epithelium (RPE)-conditioned medium (RPE-CM) displayed rounded profiles lacking processes. 661W cells grown in FGF-2 were slightly elevated, but not significantly above, control cultures; but cells treated with RPE-CM or NGF were fewer, ∼63% and 49% of control, respectively. NGF immunodepletion of RPE-CM strongly suppressed the inhibitory activity of RPE-CM on cell proliferation. Cells treated with FGF-2, but not NGF, upregulated their expression of opsin. All treatment conditions resulted in almost 100% viability based on calcium AM staining. Cells grown on extracellular matrix proteins laminin, fibronectin, and/or collagen resembled those grown on untreated dishes. This study showed that early passaged 661W cells displayed characteristics of retinal progenitor cells. The 661W cells proliferated and appeared to mature morphologically expressing rod photoreceptor phenotype in response to FGF-2. In contrast, NGF and RPE-CM inhibited proliferation and morphological differentiation of 661W cells, possibly inducing cell cycle arrest. These findings are consistent with reports that the RPE modulates photoreceptor differentiation and retinal progenitor cells via secreted factors and may play a role in the regulation of the retinal stem cell niche.  相似文献   

12.
Glaucoma is one of the leading eye diseases due to the death of retinal ganglion cells. Increasing evidence suggests that retinal Müller cells exhibit the characteristics of retinal progenitor cells and can differentiate to neurons in injured retinas under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to promote the differentiation of retinal Müller cells into ganglion cells by introducing Atoh7 into the stem cells dedifferentiated from retinal Müller cells. Rat retinal Müller cells were isolated and dedifferentiated into stem cells, which were transfected with PEGFP-N1 or PEGFP-N1-Atoh7 vector, and then further induced to differentiate into ganglion cells. The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of control transfected or untransfected cells. In summary, Atoh7 promotes the differentiation of retinal Müller cells into retinal ganglion cells. This may open a new avenue for gene therapy of glaucoma by promoting optic nerve regeneration.  相似文献   

13.
采用金黄地鼠视神经切断并缝接坐骨神经的再生实验模型,玻璃体内注射IBMX或/和CPT-cAMP,荧光金逆行标记再生的RGCs结合P物质免疫荧光组化双标法,研究外周神经缝接于视神经断端能否促进P物质阳性的视网膜节细胞(RGCs)再生及IBMX或/和CPT-cAMP处理对其再生的影响。实验结果:①术后四周,对照AG组每个视网膜 再生RGCs数1329±104,双标细胞平均数为45±5,占再生RGCs总数的3.4%;②AG+IBMX组每个视网膜再生RGCs数为2099±419,再生P物质阳性节细胞平均数为119±22,占再生RGCs总数的6.55%;③AG+cAMP组每个视网膜再生RGCs数为2048±133,再生P物质阳性节细胞平均数为127±37,占再生RGCs总数的6.15%;④AG+IB-MX+cAMP组每个视网膜再生RGCs数为4370±487,再生P物质阳性节细胞平均数为339±72,占再生RGCs总数的7.98%,与对照组的差异具有统计学意义。表明成年哺乳动物P物质阳性RGCs能再生,玻璃体内注射IBMX或/和CPT-cAMP可以促进该类RGCs再生。  相似文献   

14.
Sohee Jeon  Il-Hoan Oh 《BMB reports》2015,48(4):193-199
Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases. [BMB Reports 2015; 48(4): 193-199]  相似文献   

15.
Exenatide (exendin-4 analogue) is widely used in clinics and shows a neuroprotective effect. The main objectives of the present study were to prove that retinal ganglion cells (RGC-5) express GLP-1R, to ascertain whether exenatide prevents a high-glucose-induced RGC-5 impairment, to determine the appropriate concentration of exenatide to protect RGC-5 cells, and to explore the neuroprotective mechanisms of exenatide. Immunofluorescence and Western blot analyses demonstrated that RGC-5 cells express GLP-1R. We incubated RGC-5 cells with 25 mM glucose prior to incubation with either 25 mM glucose, 55 mM glucose (high), high glucose plus exenatide or high glucose plus a GLP-1R antagonist. The survival rates of the cells were measured by CCK-8, and cellular injury was detected by electron microscopy. There were statistical differences between the high-glucose group and the control group (P<0.05). Exenatide improved the survival rate of the cells and suppressed changes in the mitochondrial morphology. The optimum concentration of exenatide to protect the RGC-5 cells from high-glucose-induced RGC injury was 0.5 μg/ml, and this protective effect could be inhibited by exendin (9-39). To further study the mechanism underlying the beneficial effects of exenatide, the expression levels of cytochrome c, Bcl-2, Bax and caspase-3 were analysed by Western blot. The present study showed that treatment with exenatide significantly inhibited cytochrome c release and decreased the intracellular expression levels of Bax and caspase-3, whereas Bcl-2 was increased (P<0.05). These results suggested that GLP-1R activation can inhibit the cellular damage that is induced by high glucose. A mitochondrial mechanism might play a key role in the protective effect of exenatide on the RGC-5 cells, and exenatide might be beneficial for patients with diabetic retinopathy.  相似文献   

16.
Retinal ganglion cells in the rat were studied using the heavy metal intensified cytochrome oxidase and horseradish peroxidase histochemical methods.The results show that a population of large retinal ganglion cells was consistently observed with the cytochrome oxidase staining method in retinas of normal rats or rats which received unilateral thalamotomy at birth.These cytochrome oxidase rich ganglion cells appeared to have large somata,3-6 primary dendrites and extensive dendritic arbors,and are comparable to ganglion cells labeled by the wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP).However,the morphological details of some of the cells revealed by the cytochrome oxidase staining method are frequently better than those shown by the HRP histochemical method.These results suggest that the mitochondrial enzyme cytochrome oxidase can be used as a simple but reliable marker for identifying and studying a population of retinal genglion cells with high metabolic rate in the rat.  相似文献   

17.
Mammalian Müller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Müller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Müller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Müller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Müller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.  相似文献   

18.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) is expressed on the surface of endothelial cells (EC) at high levels with important roles in angiogenesis and inflammation. However, the physiological role PECAM-1 plays during vascular development and angiogenesis remains largely unknown. Here we determined the role of PECAM-1 in the postnatal development of retinal vasculature and retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) using PECAM-1-deficient (PECAM-1−/−) mice. A significant decrease in retinal vascular density was observed in PECAM-1−/− mice compared with PECAM-1+/+ mice. This was attributed to a decreased number of EC in the retinas of PECAM-1−/− mice. An increase in the rate of apoptosis was observed in retinal vessels of PECAM-1−/− mice, which was compensated, in part, by an increase in the rate of proliferation. However, the development and regression of hyaloid vasculature were not affected in the absence of PECAM-1. We did not observe a significant defect in astrocytes, the number of endothelial tip cell filopodias, and the rate of developing retinal vasculature progression in PECAM-1−/− mice. However, we observed aberrant organization of arterioles and venules, decreased secondary branching, and dilated vessels in retinal vasculature of PECAM-1−/− mice. In addition, retinal neovascularization was attenuated in PECAM-1−/− mice during OIR despite an expression of VEGF similar to that of PECAM-1+/+ mice. Mechanistically, these changes were associated with an increase in EphB4 and ephrin B2, and a decrease in eNOS, expression in retinal vasculature of PECAM-1−/− mice. These results suggest that PECAM-1 expression and its potential interactions with EphB4/ephrin B2 and eNOS are important for survival, migration, and functional organization of EC during retinal vascular development and angiogenesis.  相似文献   

19.
The photoreaction of rhodopsin regenerated with 11-cis-13-demethyl-retinal was investigated by FTIR difference spectroscopy. The measurements show that the chromophore experiences different twists in the modified bathorhodopsin as compared to normal bathorhodopsin and that the twists are relaxed in the additional intermediate batho-lumirhodopsin. Whereas the missing methyl group influences the lumimetarhodopsin-I transition, a metarhodopsin-I-metarhodopsin-II difference spectrum very similar to that of unmodified rhodopsin is observed. The significance of the steric interaction for regulating the photoreaction is discussed.Abbreviations 9-H- 9-demethyl - 13-H 13-demethyl - 5,6-H2 5,6-dihydro - HOOP hydrogen-out-of-plane - FTIR Fourier transform infrared Offprint requests to: F. Siebert  相似文献   

20.
It has been claimed that glutamate excitotoxicity might have a role in the pathogenesis of several retinal degenerative diseases, including glaucoma and diabetic retinopathy. Neuropeptide Y (NPY) has neuroprotective properties against excitotoxicity in the hippocampus, through the activation of Y1, Y2 and/or Y5 receptors. The principal objective of this study is to investigate the potential protective role of NPY against glutamate-induced toxicity in rat retinal cells (in vitro and in an animal model), unraveling the NPY receptors and intracellular mechanisms involved. Rat retinal neural cell cultures were prepared from newborn Wistar rats (P3-P5) and exposed to glutamate (500 μM) for 24 h. Necrotic cell death was evaluated by propidium iodide (PI) assay and apoptotic cell death using TUNEL and caspase-3 assays. The cell types present in culture were identified by immunocytochemistry. The involvement of NPY receptors was assessed using selective agonists and antagonists. Pre-treatment of cells with NPY (100 nM) inhibited both necrotic cell death (PI-positive cells) and apoptotic cell death (TUNEL-positive cells and caspase 3-positive cells) triggered by glutamate, with the neurons being the cells most strongly affected. The activation of NPY Y2, Y4 and Y5 receptors inhibited necrotic cell death, while apoptotic cell death was only prevented by the activation of NPY Y5 receptor. Moreover, NPY neuroprotective effect was mediated by the activation of PKA and p38K. In the animal model, NPY (2.35 nmol) was intravitreally injected 2 h before glutamate (500 nmol) injection into the vitreous. The protective role of NPY was assessed 24 h after glutamate (or saline) injection by TUNEL assay and Brn3a (marker of ganglion cells) immunohistochemistry. NPY inhibited the increase in the number of TUNEL-positive cells and the decrease in the number of Brn3a-positive cells induced by glutamate. In conclusion, NPY and NPY receptors can be considered potential targets to treat retinal degenerative diseases, such as glaucoma and diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号