首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis plays an important role in development and remodeling of vasculature during organogenesis. Coordinated branching and remodeling of the retinal vascular tree is essential for normal retinal function. Bcl-2 family members, such as bim not only influence apoptosis, but also cell adhesive and migratory properties essential during vascular development. Here we examined the impact of bim deficiency on postnatal retinal vascularization, as well as retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) and laser-induced choroidal neovascularization. Loss of bim expression was associated with increased retinal vascular density in mature animals. This was mainly attributed to increased numbers of pericytes and endothelial cells. However, the initial spread of the superficial layer of retinal vasculature and, the appearance and density of the tip cells were similar in bim+/+ and bim−/− mice. In addition, hyaloid vessel regression was attenuated in the absence of bim. Furthermore, in the absence of bim retinal vessel obliteration and neovascularization did not occur during OIR. Instead, normal inner retinal vascularization proceeded independent of changes in oxygen levels. In contrast, choroidal neovascularization occurred equally well in bim+/+ and bim−/− mice. Together our data suggest bim expression may be responsible for the inherent sensitivity of the developing retinal vasculature to changes in oxygen levels, and promotes vessel obliteration in response to hyperoxia.  相似文献   

2.
Bcl-2 is a death repressor that protects cells from apoptosis mediated by a variety of stimuli. Bcl-2 expression is regulated by both pro- and anti-angiogenic factors; thus, it may play a central role during angiogenesis. However, the role of bcl-2 in vascular development and growth of new vessels requires further delineation. In this study, we investigated the physiological role of bcl-2 in development of retinal vasculature and retinal neovascularization during oxygen-induced ischemic retinopathy (OIR). Mice deficient in bcl-2 exhibited a significant decrease in retinal vascular density compared to wild-type mice. This was attributed to a decreased number of endothelial cells and pericytes in retinas from bcl-2-/- mice. We observed, in bcl-2-/- mice, delayed development of retinal vasculature and remodeling, and a significant decrease in the number of major arteries, which branch off from near the optic nerve. Interestingly, hyaloid vessel regression, an apoptosis-dependent process, was not affected in the absence of bcl-2. The retinal vasculature of bcl-2-/- mice exhibited a similar sensitivity to hyperoxia-mediated vessel obliteration compared to wild-type mice during OIR. However, the degree of ischemia-induced retinal neovascularization was significantly reduced in bcl-2-/- mice. These results suggest that expression of bcl-2 is required for appropriate development of retinal vasculature as well as its neovascularization during OIR.  相似文献   

3.
Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4−/− mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4−/− OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies.  相似文献   

4.
We have previously shown that thrombosponsin-1 (TSP1) and PECAM-1 are components of a regulatory switch whose reciprocal regulation in the endothelial cells (EC) promotes an angiogenic or a differentiated, quiescent phenotype. The physiological role TSP1 plays in modulation of PECAM-1 expression and function during vascular development and angiogenesis remains largely unknown. Here we demonstrate that PECAM-1 undergoes alternative splicing in its cytoplasmic domain generating eight isoforms in the retinal vasculature of wild type and TSP1-/- mice. All PECAM-1 isoforms examined contained exon 13. The frequency of PECAM-1 isoform(s) containing exon 14 was significantly higher during early stages of retinal vascularization, which decreased during later stages of retinal vascularization in wild type mice. In contrast, the frequency of exon 14 containing PECAM-1 isoform(s) did not significantly change during retinal vascularization in TSP1-/- mice. They consistently expressed higher number of isoforms with exon 14 during later stages of retinal vascularization. The higher level of PECAM-1 isoforms with exon 14 was also observed in cultured TSP1-/- retinal EC compared to wild type retinal EC. This was consistent with increased amounts of Src and SHP-2 associated with PECAM-1, and enhanced migration and proliferation in TSP1-/- retinal EC. These data suggest PECAM-1 signaling in the endothelium is modulated by its alternative splicing during retinal vascular development and angiogenesis, which may be impacted by TSP1 expression.  相似文献   

5.
Retinal neovascularization in retinopathy of prematurity (ROP) is the most common cause of blindness for children. Despite evidence that hypoxia inducible factor (HIF)‐1α ‐VEGF axis is associated with the pathogenesis of ROP, the inhibitors of HIF‐1α have not been established as a therapeutic target in the control of ROP pathophysiology. We investigated the hypothesis that degradation of HIF‐1α as a master regulator of angiogenesis in hypoxic condition, using β‐lapachone, would confer protection against hypoxia‐induced retinopathy without affecting physiological vascular development in mice with oxygen‐induced retinopathy (OIR), an animal model of ROP. The effects of β‐lapachone were examined after intraocular injection in mice with OIR. Intraocular administration of β‐lapachone resulted in significant reduction in hypoxia‐induced retinal neovascularization without retinal toxicity or perturbation of developmental retinal angiogenesis. Our results demonstrate that HIF‐1α–mediated VEGF expression in OIR is associated with pathological neovascularization, not physiological angiogenesis. Thus, strategies blocking HIF‐1α in the developing eye in the pathological hypoxia could serve as a novel therapeutic target for ROP.  相似文献   

6.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in angiogenesis through its involvement in endothelial cell-cell and cell-matrix interactions and signal transduction. Recent studies indicate that the cytoplasmic domain of PECAM-1 plays an important role in its cell adhesive and signaling properties. However, the role PECAM-1 isoforms play during angiogenic events such as cell adhesion and migration requires further delineation. To gain insight into the role PECAM-1 plays during vascular development and angiogenesis, we examined the expression pattern of PECAM-1 isoforms during kidney vascularization. We show that multiple isoforms of PECAM-1 are expressed during renal vascular development with different frequencies. The PECAM-1 that lacks exons 14 and 15 (14&15) was the predominant isoform detected in the renal vasculature. To further study PECAM-1 isoform-specific functions we isolated kidney endothelial cells (EC) from wild-type and PECAM-1-deficient (PECAM-1–/–) mice with B4-lectin-coated magnetic beads. PECAM-1–/– kidney EC showed reduced migration, inability to undergo capillary morphogenesis in Matrigel, dense peripheral focal adhesions, and peripheral cortical actin distribution compared with wild-type cells. PECAM-1–/– kidney EC secreted increased amounts of fibronectin and decreased amounts of tenascin-C and thrombospondin-1. Reexpression of 14&15, but not full-length, PECAM-1 in PECAM-1–/– kidney EC restored cell migration and capillary morphogenesis defects. Thus PECAM-1 may regulate the adhesive and migratory properties of kidney EC in an isoform-specific fashion through modulation of integrin activity and extracellular matrix protein expression. Our results indicate that regulated expression of specific PECAM-1 isoforms may enable EC to accommodate the different stages of angiogenesis. CD31; alternative splicing; angiogenesis; integrins; extracellular matrix  相似文献   

7.
Apoptosis plays a critical role during development and in the maintenance of the vascular system. B-cell leukemia lymphoma 2 (bcl-2) protects endothelial cells (EC) from apoptosis in response to a variety of stimuli. Previous work from this laboratory demonstrated attenuation of postnatal retinal vascular development and retinal neovascularization during oxygen-induced ischemic retinopathy in bcl-2-deficient (bcl-2-/-) mice. To gain further insight into the function of bcl-2 in the endothelium, we isolated retinal EC from bcl-2+/+ and bcl-2-/- mice. Retinal EC lacking bcl-2 demonstrated reduced cell migration, tenascin-C expression, and adhesion to vitronectin and fibronectin. The bcl-2-/- retinal EC also failed to undergo capillary morphogenesis in Matrigel. In addition, using an ex vivo angiogenesis assay, we observed reduced sprouting from aortic rings grown in culture from bcl-2-/- mice compared with bcl-2+/+ mice. Furthermore, reexpression of bcl-2 was sufficient to restore migration and capillary morphogenesis defects observed in bcl-2-/- retinal EC. Mechanistically, bcl-2-/- cells expressed significantly less endothelial nitric oxide synthase, an important downstream effecter of proangiogenic signaling. This may be attributed to increased oxidative stress in the absence of bcl-2. In fact, incubation of retinal EC or aortic rings from bcl-2-/- mice with the antioxidant N-acetylcysteine rescued their capillary morphogenesis and sprouting defects. Thus, bcl-2-mediated cellular functions play important roles not only in survival but also in proangiogenic phenotype of EC with a significant impact on vascular development and angiogenesis.  相似文献   

8.
Current clinical treatments for ocular neovascularization are characterized by high possibility of damaging healthy tissues and high recurrence rates. It is necessary to develop new treatment methods to control neovascularization with a stable and effective effect. Kringle1 domain of hepatocyte growth factor (HGFK1) has anti-angiogenesis activity. Here, we established oxygen-induced retinopathy (OIR) model to study if using adeno-associated virus (AAV) as a delivery system to overexpression HGFK1 in retinal cells could benefit retinal neovascularization. We show that, overexpressed exogenous gene was mainly expressed in the inner and outer nuclear layer of the retina. Compared with control mice, the mice pretreated with rAAV-HGFK1 at P3 showed relatively normal vascular branches examined by fluorescence fundus angiography. Subsequent H&E staining and immunohistochemical staining of CD31 of the eye tissue sections showed that the mice received rAAV-HGFK1 had a relatively normal distribution of vascular endothelial cells. Additionally, immunohistochemical staining indicated a lower expression of VEGF in the eye tissues of rAAV-HGFK1 treated OIR mice. Further in vitro studies showed that HGFK1 could inhibit the proliferation but promote the apoptosis of bovine retinal microvascular endothelial cells (BRECs) under the presence of VEGF. Moreover, HGFK1 could inhibit VEGF induced ERK activation but promote p38 activation in BRECs. Therefore, we propose that intravitreal injection of rAAV-HGFK1 might be used to improve the retinal neovascularization and HGFK1 may function through regulating VEGF signaling pathway to inhibit neovascularization.  相似文献   

9.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

10.
Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis.  相似文献   

11.
Retinal neovascularization (NV) and macular edema, resulting from blood-retinal barrier (BRB) breakdown, are major causes of visual loss in ischemic retinopathies. Choroidal NV (CNV) occurs in diseases of the retinal pigmented epithelium/Bruch's membrane complex and is another extremely prevalent cause of visual loss. We used mice in which the hypoxia response element (HRE) is deleted from the vascular endothelial growth factor (vegf) promoter (Vegf(delta/delta) mice) to explore the role of induction of VEGF through the HRE in these disease processes. Compared to wild type (Vegf+/+) mice with oxygen-induced ischemic retinopathy (OIR) in which vegf mRNA levels were increased and prominent retinal NV and BRB breakdown occurred, Vegf(delta/delta) littermates with OIR failed to increase vegf mRNA levels in the retina and had significantly less retinal NV and BRB breakdown, but showed prominent dilation of some superficial retinal vessels. Vegf(+/delta) littermates with ischemic retinopathy developed comparable retinal NV to Vegf+/+ mice, exhibited intermediate levels of BRB breakdown, and did not show vasodilation. In a mouse model of CNV, due to laser-induced rupture of Bruch's membrane, the area of CNV at Bruch's membrane rupture sites was more than tenfold greater in Vegf+/+ mice than in Vegf(delta/delta) littermates. In contrast to these dramatic differences in pathologic ocular NV, Vegf(delta/delta) mice showed subtle differences in retinal vascular development compared to Vegf+/+ mice; it was slightly delayed, but otherwise normal. These data suggest that induction of VEGF through the HRE in its promoter is critical for retinal and CNV, but not for retinal vascular development.  相似文献   

12.
Oxygen-induced retinopathy (OIR) is a model for human retinopathy of prematurity. In mice with OIR, beta-adrenergic receptor (β-AR) blockade with propranolol has been shown to ameliorate different aspects of retinal dysfunction in response to hypoxia. In the present study, we used the OIR model to investigate the role of distinct β-ARs on retinal proangiogenic factors, pathogenic neovascularization and electroretinographic responses. Our results demonstrate that β(2) -AR blockade with ICI 118,551 decreases retinal levels of proangiogenic factors and reduces pathogenic neovascularization, whereas β(1) - and β(3) -AR antagonists do not. Determination of retinal protein kinase A activity is indicative of the fact that β-AR blockers are indeed effective at the receptor level. In addition, the specificity of ICI 118,551 on retinal angiogenesis has been demonstrated by the finding that in mouse retinal explants, β(2) -AR silencing prevents ICI 118,551 effects on hypoxia-induced vascular endothelial growth factor accumulation. In OIR mice, ICI 118,551 is effective in increasing electroretinographic responses suggesting that activation of β(2) -ARs constitutes an important part of the retinal response to hypoxia. Lastly, immunohistochemical studies demonstrate that β(2) -ARs are localized to several retinal cells, particularly to Müller cells suggesting the possibility that β(2) -ARs play a role in regulating vascular endothelial growth factor production by these cells. The present results suggest that pathogenic angiogenesis, a key change in many hypoxic/ischemic vision-threatening retinal diseases, depends at least in part on β(2) -AR activity and indicate that β(2) -AR blockade can be effective against retinal angiogenesis.  相似文献   

13.

Background

Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis.

Methodology/Principal Findings

Notably, during oxygen induced retinopathy (OIR) N-CAM accumulated on astrocytes surrounding the epiretinal tufts. Here, we show that N-CAM ablation results in reduced vascular tuft formation due to reduced endothelial cell proliferation despite an elevation in VEGFA mRNA expression, whereas retinal developmental angiogenesis was unaffected.

Conclusion/Significance

We conclude that N-CAM exhibits a regulatory function in pathological angiogenesis in OIR. This is a novel finding that can be of clinical relevance in diseases associated with proliferative vasculopathy.  相似文献   

14.
Retinal vascular damages are the cardinal hallmarks of retinopathy of prematurity (ROP), a leading cause of vision impairment and blindness in childhood. Both angiogenesis and vasculogenesis are disrupted in the hyperoxia-induced vaso-obliteration phase, and recapitulated, although aberrantly, in the subsequent ischemia-induced neovessel formation phase of ROP. Yet, whereas the histopathological features of ROP are well characterized, many key modulators with a therapeutic potential remain unknown. The CCN1 protein also known as cysteine-rich protein 61 (Cyr61) is a dynamically expressed, matricellular protein required for proper angiogenesis and vasculogenesis during development. The expression of CCN1 becomes abnormally reduced during the hyperoxic and ischemic phases of ROP modeled in the mouse eye with oxygen-induced retinopathy (OIR). Lentivirus-mediated re-expression of CCN1 enhanced physiological adaptation of the retinal vasculature to hyperoxia and reduced pathological angiogenesis following ischemia. Remarkably, injection into the vitreous of OIR mice of hematopoietic stem cells (HSCs) engineered to express CCN1 harnessed ischemia-induced neovessel outgrowth without adversely affecting the physiological adaptation of retinal vessels to hyperoxia. In vitro exposure of HSCs to recombinant CCN1 induced integrin-dependent cell adhesion, migration, and expression of specific endothelial cell markers as well as many components of the Wnt signaling pathway including Wnt ligands, their receptors, inhibitors, and downstream targets. CCN1-induced Wnt signaling mediated, at least in part, adhesion and endothelial differentiation of cultured HSCs, and inhibition of Wnt signaling interfered with normalization of the retinal vasculature induced by CCN1-primed HSCs in OIR mice. These newly identified functions of CCN1 suggest its possible therapeutic utility in ischemic retinopathy.  相似文献   

15.
Retinal and choroidal neovascularization   总被引:20,自引:0,他引:20  
The unique vascular supply of the retina, the ability to visualize the vasculature in vivo, and the ability to selectively express genes in the retina make the retina an ideal model system to study molecular mechanisms of angiogenesis. In addition, this area of investigation has great clinical significance, because retinal and choroidal neovascularization are the most common causes of severe visual loss in developed countries and new treatments are needed. As a result, interest in ocular neovascularization is rapidly growing and there has been considerable recent progress. Use of genetically engineered mice in recently developed murine models provides a means to investigate the role of individual gene products in neovascularization in two distinct vascular beds, the retinal vasculature and the choroidal vasculature. It appears that angiogenesis in different vascular beds has common themes, but also has tissue-specific aspects. This review summarizes recent progress in the field of ocular neovascularization and the prospects that it provides for the development of new treatments.  相似文献   

16.
Bcl–2 is an anti-apoptotic protein with important roles in vascular homeostasis and angiogenesis. Mice globally lacking Bcl–2 (Bcl–2 -/-) are small in stature and succumb to renal failure shortly after weaning as a result of renal hypoplasia/cystic dysplasia. We have shown that Bcl–2 -/- mice displayed attenuated retinal vascular development and neovascularization. In vitro studies indicated that in addition to modulating apoptosis, Bcl–2 expression also impacts endothelial and epithelial cell adhesion, migration and extracellular matrix production. However, studies delineating the cell autonomous role Bcl–2 expression plays in the endothelium during vascular development, pruning and remodeling, and neovascularization are lacking. Here we generated mice carrying a conditional Bcl–2 allele (Bcl-2Flox/Flox) and VE-cadherin-cre (Bcl-2EC mice). Bcl-2EC mice were of normal stature and lifespan and displayed some but not all of the retinal vascular defects previously observed in global Bcl–2 deficient mice. Bcl-2EC mice had decreased numbers of endothelial cells, decreased retinal arteries and premature primary branching of the retinal vasculature, but unlike the global knockout mice, spreading of the retinal superficial vascular layer proceeded normally. Choroidal neovascularization was attenuated in Bcl-2EC mice, although retinal neovascularization accompanying oxygen-induced ischemic retinopathy was not. Thus, Bcl–2 expression in the endothelium plays a significant role during postnatal retinal vascularization, and pathological choroidal but not retinal neovascularization, suggesting vascular bed specific Bcl–2 function in the endothelium.  相似文献   

17.
15-lipoxygenase-1 (15-LOX-1) plays an important role in angiogenesis, but how it works still remains a controversial subject. The aims of our study are focused on determining whether or not 15-LOX-1 inhibiting oxygen-induced ischemic retinal neovascularization (RNV) and the underlying regulatory mechanism involving of 15-LOX-1, peroxisome proliferator-activated receptor γ (PPAR-γ) and vascular endothelial growth factor receptor 2 (VEGFR-2) in oxygen-induced retinopathy (OIR). Recombinant adenoviral vectors that expressing the 15-LOX-1 gene (Ad-15-LOX-1-GFP) or the green fluorescence protein gene (Ad-GFP) were intravitreous injected into the OIR mice at postnatal day 12 (P12), the mice were sacrificed 5 days later (P17). Retinal 15-LOX-1 expression was significantly increased at both mRNA and protein levels after 15-LOX-1 gene transfer. Immunofluorescence staining of retinal sections revealed 15-LOX-1 expression was primarily in the outer plexiform layer (OPL), inner nuclear layer (INL) and ganglion cell layer (GCL) retina. Meanwhile, RNV was significantly inhibited indicated by fluorescein retinal angiography and quantification of the pre-retinal neovascular cells. The expression levels of PPAR-γ were significantly up-regulated while VEGFR-2 were significantly down-regulated both in mRNA and protein levels. Our results suggested 15-LOX-1 gene transfer inhibited RNV in OIR mouse model via up-regulation of PPAR-γ and further down-regulation of VEGFR-2 expression. This could be a potentially important regulatory mechanism involving 15-LOX-1, PPAR-γ and VEGFR-2 during RNV in OIR. In conclusion, 15-LOX-1 may be a new therapeutic target for treating neovascularization diseases.  相似文献   

18.
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3′-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair.  相似文献   

19.

Aims

It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration.

Main methods

Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21.

Key findings

Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P < 0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice.

Significance

Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model.  相似文献   

20.
Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号