首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The acute phase response is an evolutionarily conserved response of the liver to inflammatory stimuli, which aids the body in host defense and homeostasis. We have previously reported that CCAAT enhancer-binding protein alpha (C/EBPalpha) is required for the induction of acute phase protein (APP) genes in newborn mice in response to lipopolysaccharide. In this paper, we describe a mechanism by which C/EBPalpha knock-out mice are unable to induce APP gene expression in response to inflammatory stimuli. We demonstrate that the lack of acute phase response in C/EBPalpha knock-out mice is because of a hepatocyte autonomous defect. C/EBPalpha knock-out hepatocytes do not activate STAT3 in response to recombinant interleukin (IL)-6, indicating a defect in the IL-6 pathway. C/EBPalpha knock-out hepatocytes also do not show activation of other IL-6 receptor (IL-6R)-mediated Janus kinase substrates, gp130, SHP-2, and Tyk2. Further examination of the IL-6 pathway demonstrated that C/EBPalpha knock-out hepatocytes have decreased IL-6Ralpha protein levels caused, in part, by reduced protein stability. However, other components of the IL-6 pathway are intact, as demonstrated by rescue of STAT3 activation and APP gene induction with recombinant-soluble IL-6R linked to IL-6 cytokine (Hyper-IL-6) or with another gp130 signaling cytokine, Oncostatin M. In conclusion, C/EBPalpha is required for the proper regulation of IL-6Ralpha protein in hepatocytes resulting in a lack of acute phase protein gene induction in newborn C/EBPalpha null mice in response to lipopolysaccharide or cytokines.  相似文献   

14.
15.
The sumoylation of CCAAT/enhancer-binding proteins (C/EBPs) by small ubiquitin-related modifier-1 (SUMO-1) has been reported recently. In this study, we investigated the functional role of the sumoylation of C/EBPalpha in the differentiation of hepatocytes. The amount of sumoylated C/EBPalpha gradually decreased during the differentiation, which suggests that the sumoylation is important for the control of growth/differentiation especially in the fetal liver. To analyze the function of the sumoylation of C/EBPalpha in liver-specific gene expression, we studied its effects on the expression of the albumin gene. The C/EBPalpha-mediated transactivation of the albumin gene was reduced by sumoylation of C/EBPalpha in primary fetal hepatocytes. The enhancement of C/EBPalpha-mediated transactivation by BRG1, a core subunit of the SWI/SNF chromatin remodeling complex, was hampered by sumoylation in a luciferase reporter assay. In addition, we discovered that sumoylation of C/EBPalpha blocked its inhibitory effect on cell proliferation by leading to the disruption of a proliferation-inhibitory complex because of a failure of the sumoylated C/EBPalpha to interact with BRG1. BRG1 was recruited to the dihydrofolate reductase promoter in nonproliferating C33a cells but was not detected in proliferating cells where C/EBPalpha, BRG1, and SUMO-1 were overexpressed. This result suggests that BRG1 down-regulates the expression of the dihydrofolate reductase gene. These findings provide the insight that SUMO acts as a space regulator, which affects protein-protein interactions.  相似文献   

16.
17.
18.
The matrix-mediated enamel biomineralization involves secretion of the enamel specific amelogenin proteins that through self-assembly into nanosphere structures provide the framework within which the initial enamel crystallites are formed. During enamel mineralization, amelogenin proteins are processed by tooth-specific proteinases. The aim of this study was to explore the factors that affect the activity of enamel proteases to process amelogenins. Two factors including amelogenin self-assembly and enzyme specificity are considered. We applied a limited proteolysis approach, combined with mass spectrometry, in order to determine the surface accessibility of conserved domains of amelogenin assemblies. A series of commercially available proteinases as well as a recombinant enamelysin were used, and their proteolytic actions on recombinant amelogenin were examined under controlled and limited conditions. The N-terminal region of the recombinant mouse amelogenin rM179 was found to be more accessible to tryptic digest than the C-terminal region. The endoproteinase Glu-C cleaved amelogenin at both the N-terminal (E18/V) and C-terminal (E178/V) sites. Chymotrypsin cleaved amelogenin at both the carboxy- (F151/S) and amino-terminal (W25/Y) regions. Interestingly, the peptide bond F/S152 was also recognized by the action of enamelysin on recombinant mouse amelogenin whereas thermolysin cleaved the S152/M153 peptide bond in addition to T63/L64 and I159/L160 and M29/I30 bonds. It was then concluded that regions at both the carboxy- and amino-terminal were exposed on the surface of amelogenin nanospheres when the N-terminal 17 amino acid residues were proposed to be protected from proteolysis, presumably as the result of their involvement in direct protein-protein interaction. Cleavage around the FSM locus occurred by recombinant enamelysin under limited conditions, in both mouse (F151/S152) and pig amelogenins (S148/M). Our in vitro observations on the limited proteolysis of amelogenin by enamelysin suggest that enamelysin cleaved amelogenin at the C-terminal region showing a preference of the enzyme to cleave the S/M and F/S bonds. The present limited proteolysis studies provided insight into the mechanisms of amelogenin degradation during amelogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号