首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

2.
从20头供体母猪获得的291枚可用胚胎(囊胚/桑葚胚),采用二步法开放式拉长细管(OPS,openpulledstraw)玻璃化冷冻技术进行保存,即胚胎首先在冷冻液I(TCM199 20?S 10%EG 10%DMSO)中平衡3min,然后立即转入冷冻液II(TCM199 20?S 20%EG 20%DMSO 0.4mol/LSUC)中并在1min内装管,直接投入液氮保存;3个月后解冻移植给8头受体母猪,其中1头怀孕产仔(8头活仔),在我国首次获得猪胚胎超低温(-196℃)冷冻后代。  相似文献   

3.
Unhatched blastocysts from Large White hyperprolific gilts (n=103) were identified, measured and vitrified using the Open Pulled Straw (OPS) technique to evaluate the effects of the collected blastocyst size and cryoprotectant concentrations used for vitrification, and the number of embryos transferred per recipient. Vitrified/warmed blastocyst viability was estimated in vitro, as the percentage of embryos developing after 72h, and in vivo, on pregnancy Day 30. In the in vitro study, we compared the use of three cryoprotectant concentrations (16.5, 18, or 20% DMSO+16.5, 18, or 20% EG+0.4M sucrose). Survival rates differed significantly between the control (98.3%) and the three cryoprotectant concentrations (67, 62.3, and 57%, respectively). Blastocyst size at vitrification determined the further in vitro development of embryos (26% survival for blastocysts 126-144microm versus 100% for blastocysts >199microm). For the in vivo study, blastocysts were vitrified using cryoprotectant concentrations of 16.5 or 18% DMSO+EG and transferred surgically in groups of 20 or 30 per recipient (n=40). Recipients were slaughtered on pregnancy D30. No significant differences were detected in gestation rates (50-70%) and embryo survival rates (14.7-25%), although survival was higher (P=0.0003) when 20 blastocysts were transferred compared to 30 (24.7% versus 15.5%). Our findings indicate that best results, in terms of subsequent in vivo embryo survival, were achieved after transferring 20 embryos at the blastocyst or expanded blastocyst stage, previously vitrified using cryoprotectant concentrations of 16.5 or 18%.  相似文献   

4.
This study examined the effects of adding a macromolecule, polyvinylpyrrolidone (10% PVP) and a sugar (0.3 M trehalose) to vitrification solutions (VS) containing either one (40% ethylene glycol [EG], two (25% EG+25% DMSO) or three (20% EG+20% DMSO+10% 1, 3-butanediol [BD]) permeable cryoprotectants on the survival and hatching of IVP bovine embryos, following vitrification, warming and in-straw cryoprotectant dilution. Grade 1 and 2 compact morulae and blastocysts were selected on Day 7 (Day 0=IVF) of culture in SOFaaBSA and equilibrated for 10 min at room temperature in 10% EG. Following exposure, for up to 1 min at 4 degrees C, to one of the above VS (with or without PVP+trehalose), the embryos were loaded into straws and immersed in liquid nitrogen. Following warming and in-straw cryoprotectant dilution, the embryos were cultured for 48 h to assess hatching. There was no effect of VS on the survival of embryos after 24 h, however fewer compact morulae than blastocysts survived after 24 h (24% vs. 75%; P<0.001) or hatched after 48 h (15% vs. 59%; P<0.001). When blastocysts only were considered, an interaction between VS and additional PVP+trehalose was also observed (P<0.01). Hatching was reduced when they were added to 25% EG+25% DMSO (70% vs. 45%) but was not affected for either 40% EG (44 and 49%) or to 20% EG+20% DMSO+10% BD (72 and 72%). Pregnancy rates (Day 90 ultrasound) of recipients that were transferred either two non-vitrified or two vitrified (20% EG+20% DMSO+10% BD) blastocysts, did not differ (3/6 [50%] and 11/20 [55%]). However, significantly (P<0.02) fewer recipients that received compact morulae maintained pregnancy to Day 90 although this was not affected by vitrification (fresh vs. vitrified; 1/5 [20%] vs. 3/18 [17]). These data demonstrate that a VS comprising three cryoprotectants, rather than one, enables more embryos to hatch during post-thaw culture and that the survival, following direct transfer of these vitrified embryos, is not different to non-vitrified embryos.  相似文献   

5.
Dattena M  Ptak G  Loi P  Cappai P 《Theriogenology》2000,53(8):1511-1519
Ovine blastocysts were produced by maturation, fertilization and in vitro culture (IVM/IVF/IVC) of oocytes from slaughtered adult and prepubertal ewes and collection from superovulated and inseminated adult animals. Dulbecco's PBS supplemented with 0.3 mM Na Pyruvate and 20% FCS was used as the basic cryopreservation solution. The embryos were exposed to the vitrification solution as follows: 10% glycerol (G) for 5 min, then 10% G +20% ethylene glycol (EG) for 5 min. Embryos were placed into 25% G + 25% EG in the center of 0.25- mL straws and plunged immediately into LN2. Warming was done by placing the straws into a water bath at 37 degrees C for 20 sec, and their contents were expelled into a 0.5 M sucrose solution for 3 min; the embryos were then transferred into 0.25 M and 0.125 M sucrose solution for 3 min each. Warmed blastocysts were transferred to the culture medium for 24 h. Survival was defined as the re-expansion of the blastocoele. All surviving blastocysts were transferred to synchronized recipient ewes, and the pregnancy was allowed to go to term. Of 68 vitrified in vitro produced blastocysts, 46 re-expanded (67.6%) and 10 lambs were born (14.7%). From the 62 in vivo derived and vitrified embryos, 52 re-expanded (83.8%) and 39 lambs were born (62.9%). The lambing rate of in vitro produced fresh transfer embryos was 40% (20 lambs/50 blastocysts transferred), and of the 32 in vivo derived blastocysts and transferred fresh, 26 lambs were born (81.2%). The results indicate that in vitro produced embryos can be successfully cryopreserved by vitrification.  相似文献   

6.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   

7.
Vitrification using open pulled straw (OPS) has provided encouraging results with embryos from other species. The aim of this study was to compare the survival of 6.5- and 6.75-day-old equine embryos after OPS vitrification and slow-cooling. Eighteen embryos were frozen using a slow-cooling method. Embryos were placed in modified PBS with increasing glycerol concentration (2.5%, 5%, 7.5% and 10% (v/v) 5 min each). Embryos were loaded into 0.25 ml straws then placed in a programmable freezer and subsequently plunged into liquid nitrogen. After thawing, cryoprotectant was removed by five steps with decreasing glycerol and sucrose concentrations. Twenty embryos were vitrified using the OPS method. Embryos were exposed to 7.5% dimethyl-sulfoxide (DMSO)+7.5% ethylene glycol (EG) for 3 min and in 18% DMSO+18% EG+0.4M sucrose for 1 min, loaded in OPS and plunged into liquid nitrogen. After warming, embryos were placed in decreasing sucrose concentrations. All embryos were cultured in synthetic oviduct fluid (SOF) medium for 3h and evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining. The percentage of cells entering in S-phase (%SC) was evaluated by incorporation of BrdU. No significant differences were observed for mean diameter, morphological grade and percentage of degenerate embryos after 3h of culture for slow-cooling and OPS methods. The percentage of dead cells per embryo was similar for the two procedures (42+/-6 versus 46+/-9). The percentage of cells entering in S-phase did not differ significantly between the two procedures (27+/-5 versus 26+/-6). OPS vitrification may be as efficient as slow-cooling for the cryopreservation of equine embryos. However, these results should be confirmed by the transfer of OPS vitrified embryos to recipient mares.  相似文献   

8.
CY Yang  CY Pang  BZ Yang  RC Li  YQ Lu  XW Liang 《Theriogenology》2012,78(7):1437-1445
The objective of this study was to optimize cryopreservation conditions for buffalo in vitro produced (IVP) embryos. The in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) blastocysts were vitrified with either 40% ethylene glycol (EG), 25% EG + 25% dimethylsulfoxide (DMSO), or 20% EG + 20% DMSO + 0.5 m sucrose, and the IVF blastocysts produced from abattoir-derived ovaries were also slow-frozen with either 10% EG or 0.05 m trehalose dehydrate + 1.8% EG + 0.4% BSA. Cryosurvival rates of blastocysts harvested on various days or at various developmental stages were also examined. In this study: (1) vitrification with 20% EG + 20% DMSO + 0.5 m sucrose had the best cryopreservation efficiency; (2) IVF and SCNT blastocysts had similar cryotolerance (P > 0.05); (3) after thawing, slow-frozen blastocysts reexpanded earlier than the vitrified blastocysts (P < 0.01); (4) cryosurvival rate of expanded blastocysts was higher than that of early blastocysts (P < 0.05); (5) cryosurvival rates of Days 5 to 7 blastocysts (Day 0 = day of IVF or SCNT) were higher than those of Days 8 to 9 blastocysts (P < 0.01); and (6) after embryo transfer, pregnancy rates for fresh and cryopreserved blastocysts were not different (P > 0.05). In conclusion, vitrification of Days 6 to 7 expanded blastocysts with 20% EG + 20% DMSO + 0.5 m sucrose was optimal for cryopreservation of buffalo IVP embryos.  相似文献   

9.
The aim of this study was to determine the influence of two ethylene glycol-based vitrification solutions on in vitro and in vivo survival after in-straw cryoprotectant dilution of vitrified in vitro-produced bovine embryos. Day-7 expanded blastocysts were selected according to diameter (> or = 180 microm) and osmotic characteristics and randomly assigned to one of three groups (i) VSa: vitrification in 40% EG+17.1% SUC+0.1% PVA; (ii) VSb: vitrification in 20% EG+20% DMSO; (iii) control: non-vitrified embryos. Vitrification was performed in hand-pulled glass micropipettes (GMP) and cryoprotectant dilution in 0.25 ml straws after warming in a plastic tube. Embryo viability was assessed by re-expansion and hatching rates after 72 h of IVC and by pregnancy rates after direct transfer of vitrified embryos. No differences in re-expansion rates were observed between vitrified groups after 24 h in culture (VSa=84.5%; VSb=94.8%). However, fewer VSa embryos (55.2%, P<0.05) hatched after 72 h than the VSb (75.8%) and control embryos (80.0%). To evaluate in vivo viability, vitrified embryos (VSa=20; VSb=21) were warmed under field conditions and individually transferred to synchronous recipients. Pregnancy rates (day 60) were similar between groups (VSa=20%; VSb=19%). Greater hatching rates occurred after 72 h of IVC for EG+DMSO than EG+SUC+PVA vitrification solutions. However, using a GMP vitrification container and in-tube warming, both solutions provided similar pregnancy rates after the in-straw cryoprotectant dilution and direct embryo transfer.  相似文献   

10.
This study was first employed to investigate the developmental potential of mouse hatched blastocyts (HBs) vitrified by a two-step open-pulled straw (OPS) method. HBs were obtained by culture of morulae in vitro. First, the embryos were placed in four cryprotectant solutions - that is, 10% ethylene glycol (EG), 10%E + 10%D (10% EG and 10% dimethyl sulphoxide (DMSO) in mPBS), EFS30 (30% EG, Ficoll, and sucrose) and EDFS30 (15% EG, 15% DMSO, Ficoll, and sucrose)--at 25 degrees C for 0.5 to 10 min, respectively, to determine their optimal survival after rapid dilution in 0.5 M sucrose. Secondly, based on the above best survival, the embryos were plunged into liquid nitrogen after first pretreatment in 10%E for 0.5 min and then 0.5 min equilibration in EFS30 (Group 1), or 10%E + 10%D and EDFS30 for 0.5 min, respectively (Group 2). When warming, three methods were used to dilute the cryoprotectants from the vitrified embryos. The embryos were assessed by the re-expansion of the blastocoel or development to term. The result showed that all the vitrified-warmed HBs got high in vitro survival rates (83.7% to 98.9%). The highest in vitro survival rates (87.8% in Group 1, 98.9% in Group 2) were obtained when the vitrified embryos were diluted first in 0.3 M sucrose for 5 min, then in 0.15 M sucrose for 2 min (method C). When the vitrified embryos diluted with method C were transferred, their survival rate in vivo (35.5% to 42.2% of the total) were similar to (P > 0.05) that of control (45.7%). These results demonstrate OPS method was highly efficient for the cryopreservation of mouse HBs.  相似文献   

11.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

12.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

13.
A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P < 0.05). The same indices were superior following vitrification-thawing of the blastocysts in 40% EG + 20% PVP than it was in 40% EG + 10% PVP (76.1 +/- 5.5% vs 63.7 +/- 1.8%; P < 0.05; and 61.6 +/- 6.0% vs 70.5 +/- 4.7%; P < 0.01, respectively). Exposure to the vitrification solution (40% EG + 20% PVP) at higher temperatures (37.5 degrees C vs 4 degrees C) reduced both survival and hatching rates (45.8 +/- 6.9% vs 83.9 +/- 4.4% and 41.5 +/- 1.8% vs 64.0 +/- 4.7%, respectively; P < 0.001). These results indicate that blastocysts vitrified after prefreezing the diluent portions of the straws do favor developmental competence of in vitro produced embryos.  相似文献   

14.
Research on different cryoprotectants and their associations is important for successful vitrification, since greater cryoprotectant concentration of vitrification solution may be toxic to oocytes. The aim of the present research was to compare the efficiency of immature bovine oocyte vitrification in different associations of ethylene glycol (EG), glycerol and dimethylsulfoxide (Me(2)SO). In the first experiment, oocytes were exposed to the cryoprotectant for either 30 or 60s in final solutions of EG+DMSO1 (20% EG+20% Me(2)SO) or EG+DMSO2 (25% EG+25% Me(2)SO) or EG+GLY (25% EG+25% glycerol). In the second experiment, the oocytes were vitrified in open pulled straws (OPS) using 30s exposure of final solutions of EG+DMSO1 or EG+DMSO2 or EG+GLY. Maturation rates of 30s exposure groups were not different from the control, but 60s cryoprotectant exposure was toxic, decreasing maturation rates. The vitrification with EG+DMSO2 resulted in enhanced maturation rate (29.2%) as compared with EG+DMSO1 (11.7%) and EG+GLY (4.3%) treatments. These data demonstrate that concentration and type of cryoprotectant have important effects on the developmental competence of vitrified oocytes.  相似文献   

15.
Little is known on the cryopreservation of mouse pronuclear (PN) stage embryos. In the present experiment the mouse 2-PN stage embryos were cryopreserved by conventional freezing, straw, or open-pulled straw (OPS) vitrificaiton methods. The conventional freezing solution was 1.5 mol/L ethylene glycol (EG), and vitrification solutions were EFS30 (30% EG, Ficoll, and sucrose), EFS40 (40% EG, Ficoll, and sucrose), EDFS30 (15% EG, 15%dimethyl sulfoxide [DMSO], Ficoll, and sucrose), or EDFS40 (20% EG, 20%DMSO, Ficoll, and sucrose). The blastocyst rate of 2-PN stage embryos cryopreserved by conventional method (30.4%) was lower than those vitrified by straw method with EDFS (56.9% to 69.1%), by OPS method (66.0% to 85.7%), and that of control (80.8%) (P < 0.05). With a given vitrificaiton solution EFS30, EFS40, EDFS30, or EDFS40, the blastocyst rate of embryos vitrified by the OPS method (66.7%, 66.0%, 85.7%, or 76.9%) was higher than that of those vitrified by the straw method (46.8%, 43.8%, 69.1%, or 56.9%) (P < 0.05). When mouse 2-PN-stage embryos were vitrified with EDFS30 by straw or OPS method, the highest blastocyst rate was achieved (69.1% or 85.7%) and was similar to that of the control, respectively. The embryos transfer results revealed that the full-term development of blastocysts derived from 2-PN stage embryos vitrified by OPS method with EDFS30 (19.9%) was similar to that of the control (23.5%), and higher than that of those cryopreserved by conventional freezing (9.3%) (P < 0.05). The present research demonstrates that the OPS method, especially with EDFS30, is more effective in cryopreserving mouse 2-PN embryos.  相似文献   

16.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

17.
Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes.  相似文献   

18.
Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.  相似文献   

19.
Rabbit zygotes at the pronuclear-stage were cryopreserved by vitrification using a gel-loading tip (GL-tip), Cryoloop or Cryotop. In GL-tip and Cryoloop methods, zygotes were first exposed to 10% ethylene glycol (EG)+10% DMSO in TCM199+20% fetal bovine serum (FBS) for 2 min, and then equilibrated for 30 s in a vitrification solution composed of 20% EG+20% DMSO+0.6 M sucrose in TCM199+20% FBS. In Cryotop method, zygotes were first exposed to 7.5% EG+7.5% DMSO+20% FBS in TCM199 for 3 min, and then equilibrated for 1 min in a vitrification solution composed of 15% EG+15% DMSO+0.5 M sucrose+20% FBS in TCM199. In vitro culture of vitrified-warmed zygotes using GL-tip and Cryoloop resulted in low cleavage rates (2 and 5%, respectively) and no development into blastocysts. In contrast, zygotes vitrified-warmed using Cryotop exhibited higher proportions of cleavage (58%) and development into blastocysts (24%). When compacted morulae or early blastocysts were vitrified by these three procedures, 80-93% of them exhibited blastocoele expansion or zona hatching during the subsequent 48 h of culture. Use of Cryotop instead of GL-tip or Cryoloop for zygote vitrification, without changing conditions of solutions and periods for exposure, equilibration and post-warm dilution, resulted in cleavage and blastocyst development rates of 88 and 45%, respectively. A longer exposure time (10 min) of zygotes to 7.5% EG+7.5% DMSO+20% FBS in TCM199 resulted in higher proportions of zygotes cleaving (94%) and developing into blastocysts (51%) after Cryotop vitrification. Proportions of post-warm zygotes (10-min exposure group) and fresh control zygotes developing into newborn offspring were 36 and 53%, respectively. Pronuclear-stage rabbit zygotes were successfully cryopreserved by vitrification using the Cryotop method.  相似文献   

20.
For the purpose of ascertaining parameters to embryo transfer on some domestic animals, mouse morulae were used as a model to investigate the effect of in-straw thawing on in vitro and in vivo-development of vitrified embryos. Embryos were vitrified in 0.25 ml straws preloaded with dilution solution (0.5 M Sucrose) and thawed in the straw by mixing the vitrification solution (Ethylene glycol + Ficoll 70 + Sucrose) and the dilution solution at 25 degrees C. The embryos were randomly divided into six groups and expelled from the straws after they had been suspended in the in-straw mixture for 3 min, 5 min, 8 min, 12 min, 16 min, and 20 min, respectively, and then they were collected under a microscope for in vitro culture or direct transfer. The in vitro developmental rates of the embryos were 92.3% to 98.4% and hatching rates were 64.1% to 75.6% for the groups of 3 min to 16 min, showing no significant differences with those of nonfrozen controls (100%, 76.2%; P > 0.05). While embryos were suspended in the straw for 20 min, the developmental rate (86.6%) and hatching rate (52.4%) were significant lower than those of the control (100%, 76.2%; P < 0.01). When the 168 frozen-thawed embryos (in-straw thawing for 5 min) and 168 fresh embryos were transferred, respectively, the proportion of live fetuses in the pregnant recipients between them (58.7% vs. 54.5%) showed no significant difference (P > 0.05). The data indicate that vitrification with EFS30 and suspension in the in-straw mixture for 3 min to 16 min, when thawing, did not affect the in vitro developmental rate and hatching rate. Moreover, the in vivo developmental rate between vitrified embryos and fresh embryos did not differ significantly. It can be concluded that this method is fit for nonsurgical embryo transfer in some domestic animals with a suggestion that the operation of embryo transfer should be accomplished within 16 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号