首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   

2.
Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and play an important role in development and in many cellular processes. We have found that BMP-2, BMP-6, and BMP-9 induce the most potent osteogenic differentiation of mesenchymal stem cells. Expression profiling analysis has revealed that the Inhibitors of DNA binding/differentiation (Id)-1, Id-2, and Id-3 are among the most significantly up-regulated genes upon BMP-2, BMP-6, or BMP-9 stimulation. Here, we sought to determine the functional role of these Id proteins in BMP-induced osteoblast differentiation. We demonstrated that the expression of Id-1, Id-2, and Id-3 genes was significantly induced at the early stage of BMP-9 stimulation and returned to basal levels at 3 days after stimulation. RNA interference-mediated knockdown of Id expression significantly diminished the BMP-9-induced osteogenic differentiation of mesenchymal progenitor cells. Surprisingly, a constitutive overexpression of these Id genes also inhibited osteoblast differentiation initiated by BMP-9. Furthermore, we demonstrated that BMP-9-regulated Id expression is Smad4-dependent. Overexpression of the three Id genes was shown to promote cell proliferation that was coupled with an inhibition of osteogenic differentiation. Thus, our findings suggest that the Id helix-loop-helix proteins may play an important role in promoting the proliferation of early osteoblast progenitor cells and that Id expression must be down-regulated during the terminal differentiation of committed osteoblasts, suggesting that a balanced regulation of Id expression may be critical to BMP-induced osteoblast lineage-specific differentiation of mesenchymal stem cells.  相似文献   

3.
4.
5.
High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation.  相似文献   

6.
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism.  相似文献   

7.
8.
9.
10.
Tenascins regulate cell interaction with the surrounding pericellular matrix. Within bone, tenascins C and W influence osteoblast adhesion and differentiation, although little is known about the regulation of tenascin expression. In this study we examined the effect of osteogenic differentiation, bone morphogenetic protein (BMP) and Wnt growth factors, and mechanical loading on tenascin expression in osteogenic cells. Osteogenic differentiation increased tenascin C (TnC), and decreased tenascin W (TnW), expression. Both growth factors and mechanical loading increased both TnC and TnW expression, albeit via distinct signaling mechanisms. Both BMP-2 and Wnt5a induction of tenascin expression were mediated by MAP kinases. These data establish a role for BMP, Wnts, and mechanical loading in the regulation of tenascin expression in osteoblasts.  相似文献   

11.
Bone morphogenetic proteins (BMPs) regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3) which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophila aristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp), Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.  相似文献   

12.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We previously demonstrated that bone morphogenetic protein (BMP) 9 is one of the most potent and yet least characterized BMPs that are able to induce osteogenic differentiation of MSCs both in vitro and in vivo. Here, we conducted gene expression-profiling analysis and identified that Hey1 of the hairy/Enhancer of split-related repressor protein basic helix-loop-helix family was among the most significantly up-regulated early targets in BMP9-stimulated MSCs. We demonstrated that Hey1 expression was up-regulated at the immediate early stage of BMP9-induced osteogenic differentiation. Chromatin immunoprecipitation analysis indicated that Hey1 may be a direct target of the BMP9-induced Smad signaling pathway. Silencing Hey1 expression diminished BMP9-induced osteogenic differentiation both in vitro and in vivo and led to chondrogenic differentiation. Likewise, constitutive Hey1 expression augmented BMP9-mediated bone matrix mineralization. Hey1 and Runx2 were shown to act synergistically in BMP9-induced osteogenic differentiation, and Runx2 expression significantly decreased in the absence of Hey1, suggesting that Runx2 may function downstream of Hey1. Accordingly, the defective osteogenic differentiation caused by Hey1 knockdown was rescued by exogenous Runx2 expression. Thus, our findings suggest that Hey1, through its interplay with Runx2, may play an important role in regulating BMP9-induced osteoblast lineage differentiation of MSCs.  相似文献   

13.
14.
Tax1 binding protein 3 (Tax1bp3) is a PDZ domain-containing protein that is overexpressed in cancer. Previous studies recognized Tax1bp3 as an inhibitor of β-catenin. Till now it is not known whether Tax1bp3 regulates osteogenic and adipogenic differentiation of mesenchymal progenitor cells. In the current study, the data showed that Tax1bp3 was expressed in bone and was increased in the progenitor cells when induced toward osteoblast and adipocyte differentiation. The overexpression of Tax1bp3 in the progenitor cells inhibited osteogenic differentiation and conversely stimulated adipogenic differentiation, and the knockdown of Tax1bp3 affected the differentiation of the progenitor cells oppositely. Ex vivo experiments using the primary calvarial osteoblasts from osteoblast-specific Tax1bp3 knock-in mice also demonstrated the anti-osteogenic and pro-adipogenic function of Tax1bp3. Mechanistic investigations revealed that Tax1bp3 inhibited the activation of canonical Wnt/β-catenin and bone morphogenetic proteins (BMPs)/Smads signalling pathways. Taken together, the current study has provided evidences demonstrating that Tax1bp3 inactivates Wnt/β-catenin and BMPs/Smads signalling pathways and reciprocally regulates osteogenic and adipogenic differentiation from mesenchymal progenitor cells. The inactivation of Wnt/β-catenin signalling may be involved in the reciprocal role of Tax1bp3.  相似文献   

15.
Byun MR  Kim AR  Hwang JH  Sung MK  Lee YK  Hwang BS  Rho JR  Hwang ES  Hong JH 《FEBS letters》2012,586(8):1086-1092
Osteoporosis arises from an imbalance between osteoblastic bone formation and osteoclastic bone resorption. In this study, we screened molecules from marine natural products that stimulate osteoblast differentiation. We found that phorbaketal A significantly stimulates osteoblast differentiation in mesenchymal cells. Increased interaction of TAZ and Runx2 stimulated phorbaketal A-induced expression of osteoblastic marker genes. The activation of ERK was important for the stimulation of differentiation because an inhibitor of ERK blocked phorbaketal A-induced osteogenic differentiation. Taken together, the results showed that phorbaketal A stimulates TAZ-mediated osteoblast differentiation through the activation of ERK.  相似文献   

16.
Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21–25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3’UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast differentiation. In summary, miR-141-3p acts as a negative regulator of hMSC proliferation and osteoblast differentiation. Targeting miR-141-3p could be used as an anabolic therapy of low bone mass diseases, e.g. osteoporosis.  相似文献   

17.
18.
Canonical Wnt signaling is particularly important for differentiation of human mesenchymal stem cells into osteoblast. MicroRNAs (miRNAs) also play an essential role in regulating cell differentiation. However, the role of miRNAs in osteoblast differentiation remains poorly understood. Here we found that the expression of miR-27 was increased during hFOB1.19 cells differentiation. Moreover, ectopic expression of miR-27 promoted hFOB1.19 cells differentiation, whereas its repression was sufficient to inhibit cell differentiation. Western blot analysis showed that the expression level of miR-27 was positively correlated with that of β-catenin, a key protein in Wnt signaling. Further, we verified that miR-27 directly targeted and inhibited adenomatous polyposis coli (APC) gene expression, and activated Wnt signaling through accumulation of β-catenin. This study suggests miR-27 is an important mediator of osteoblast differentiation, thus offering a new target for the development of preventive or therapeutic agents against osteogenic disorders.  相似文献   

19.
Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of beta-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号