首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The p19ARF p14ARF in humans protein acts as a tumour suppressor through p53 dependent and independent mechanisms. A well-established role for ARF is to regulate the post-translational modification of substrate proteins with ubiquitin and ubiquitin-like molecules such as SUMO. It is now evident that induction of ARF causes a dramatic accumulation of SUMO conjugates and this has been related to the p53 independent functions of ARF. The majority of these conjugates appear to accumulate in the nucleolus where most of ARF is also found. An obvious function for ARF, which would result in increase of SUMOylation, is to act as an atypical SUMO E3-ligase. Indeed, initial studies suggested that ARF could directly interact with the SUMO E2-conjugating enzyme Ubc9 and therefore bringing the SUMO conjugation machinery in close proximity to its interacting substrates.1 However, the highly basic charged nature of ARF makes biochemical analysis difficult and there is no clear demonstration that ARF can fulfill the criteria for an E3-ligase in vitro. Therefore, the mechanism(s) behind this phenomenon are not currently understood. As with ubiquitination, SUMO conjugation is a dynamic process controlled by E3-ligases and proteases that specifically remove SUMO from substrates. In this issue of Cell Cycle studies from the Sherr lab suggest that ARF can increase SUMO conjugation by controlling the stability of the nucleolar SUMO protease SENP3.2 Recent studies have shown that SENP3 can deconjugate SUMO-2 and SUMO-3 from substrates including nucleophosmin (NPM). NPM is a nucleolar protein, which among other processes is involved in the processing of rRNA during ribosome biosynthesis. NPM interacts with ARF and this results in increased SUMOylation of NPM. SENP3 can counteract the effect of ARF by deconjugating SUMO from NPM and this appears to be critical for NPM function in rRNA processing.3 The new study now suggests that there is an opposing functional relationship between ARF and SENP3. ARF promotes phosphorylation dependent ubiquitination of SENP3, which results in SENP3 degradation and increase in NPM SUMO conjugation. In this process, NPM seems to act as a "platform" for ARF and SENP3, bringing in close proximity its two regulators. The new study suggests an interesting and complex mechanism by which ARF can control SUMOylation. It is now evident that post-translational modifications cooperate to control protein function. The new data suggest that ARF engages phosphorylation to promote ubiquitination and proteasomal degradation of a SUMO protease. This model would propose the existence of a kinase/phosphatase and an E3-ubiquitin ligase/de-ubiquitinating enzyme set which would cooperate their actions to control the stability of SENP3. Given that ARF has multiple binding partners, it would not be surprising that ARF would interact with components of the above enzymatic steps and control their activity. It would therefore be interesting to identify the role of ARF in this process. It is not clear whether degradation of SENP3 per se is sufficient to induce NPM SUMO conjugation and if this is the case which SUMO E3-ligases drive the forward reaction. Even if in this study an interaction of ARF with Ubc9 could not be demonstrated it may be the case that ARF mediates both the degradation of SENP3 and recruitment of the SUMO conjugation machinery, which will result in fast and efficient accumulation of SUMOylated NPM. Another possibility is the effect of ARF on NPM stability itself. Previous studies have shown that ARF can induce ubiquitin-mediated degradation of NPM.4 As NPM is important to prevent destabilisation of SENP3, ARF-mediated degradation of NPM could be part of SENP3 degradation. Another point that arises from this is the site of degradation for SENP3. Nucleoli have been suggested to be deficient for proteasomal activity, suggesting that ARF through the phosphorylation/ubiquitination events may alter the localisation/mobility of SENP3 making it susceptible to nucleoplasmic/cytoplasmic proteasomal degradation. The effect of ARF in controlling protein ubiquitination is now well established. Interaction of ARF with E3-ligases such as Mdm2 and ARF-BP1/Mule inhibits their function resulting in inhibition of p53 proteasomal degradation.5,6 Therefore, the ability of ARF to induce ubiquitination and proteasomal degradation of SENP3 and NPM shows a complex and diverse role for ARF to control protein stability. Further experiments will show whether the ability of ARF to promote degradation of SENP3 or possibly other SUMO proteases is a general mechanism through which ARF induces SUMO conjugation of its binding partners or that the NPM/SENP3 system is a unique example.

References

1. Rizos H, Woodruff S, Kefford RF. p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle 2005; 4:597-603. 2. Kuo ML, den Besten W, Thomas MC, Sherr CJ. Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 2008; 7:In this issue 3. Haindl M, Harasim T, Eick D, Muller S. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 2008; 9:273-9 4. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12:1151-64. 5. Xirodimas D, Saville MK, Edling C, Lane DP, LaÃ?Â?Ã?Â?Ã?Â?Ã?­n S. Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene 2001; 20:4972-83. 6. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121:1071-83.  相似文献   

3.
P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2   总被引:7,自引:0,他引:7  
p14ARF tumour suppressor stabilises and activates p53 by directly interacting with (H)Mdm2 [(human) murine double minute 2 homologue] and inhibiting its E3 ubiquitin ligase activity. Here we demonstrate that p14ARF promotes accumulation of (H)Mdm2 conjugated to the small ubiquitin-like protein SUMO-1. Mutational analysis demonstrated that the N-terminus of Mdm2 is a target for p14ARF-mediated SUMO conjugation. SUMO modification requires residues 2-14 in p14ARF that interact with (H)Mdm2 and residues 82-101 in exon 2 involved in nucleolar localisation of p14ARF. These data suggest a novel role for p14ARF as a regulator of activity of (H)Mdm2, which could be related to its tumour suppressing activities.  相似文献   

4.
The ubiquitin-like SUMO system functions by a cyclic process of modification and demodification, and recent data suggest that the nucleolus is a site of sumoylation-desumoylation cycles. For example, the tumour suppressor ARF stimulates sumoylation of nucleolar proteins. Here, we show that the nucleolar SUMO-specific protease SENP3 is associated with nucleophosmin (NPM1), a crucial factor in ribosome biogenesis. SENP3 catalyses desumoylation of NPM1-SUMO2 conjugates in vitro and counteracts ARF-induced modification of NPM1 by SUMO2 in vivo. Intriguingly, depletion of SENP3 by short interfering RNA interferes with nucleolar ribosomal RNA processing and inhibits the conversion of the 32S rRNA species to the 28S form, thus phenocopying the processing defect observed on depletion of NPM1. Moreover, mimicking constitutive modification of NPM1 by SUMO2 interferes with 28S rRNA maturation. These results define SENP3 as an essential factor for ribosome biogenesis and suggest that deconjugation of SUMO2 from NPM1 by SENP3 is critically involved in 28S rRNA maturation.  相似文献   

5.
Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-related protein family, is covalently conjugated to lysine residues of its substrates in a process referred to as SUMOylation. SUMOylation occurs through a series of enzymatic reactions analogous to that of the ubiquitination pathway, resulting in modification of the biochemical and functional properties of substrates. To date, four mammalian SUMO isoforms, a single heterodimeric SUMO-activating E1 enzyme SAE1/SAE2, a single SUMO-conjugating E2 enzyme ubiquitin-conjugating enzyme E2I (UBC9), and a few subgroups of SUMO E3 ligases have been identified. Several SUMO E3 ligases such as topoisomerase I binding, arginine/serine-rich (TOPORS), TNF receptor-associated factor 7 (TRAF7), and tripartite motif containing 27 (TRIM27) have dual functions as ubiquitin E3 ligases. Here, we demonstrate that the ubiquitin E3 ligase UHRF2 also acts as a SUMO E3 ligase. UHRF2 effectively enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. In addition, the SUMO E3 activity of UHRF2 on ZNF131 depends on the presence of SET and RING finger-associated and nuclear localization signal-containing region domains, whereas the critical ubiquitin E3 activity RING domain is dispensable. Our findings suggest that UHRF2 has independent functional domains and regulatory mechanisms for these two distinct enzymatic activities.  相似文献   

6.
RABL6A (RAB-like 6 isoform A) is a novel protein that was originally identified based on its association with the Alternative Reading Frame (ARF) tumor suppressor. ARF acts through multiple p53-dependent and p53-independent pathways to prevent cancer. How RABL6A functions, to what extent it depends on ARF and p53 activity, and its importance in normal cell biology are entirely unknown. We examined the biological consequences of RABL6A silencing in primary mouse embryo fibroblasts (MEFs) that express or lack ARF, p53 or both proteins. We found that RABL6A depletion caused centrosome amplification, aneuploidy and multinucleation in MEFs regardless of ARF and p53 status. The centrosome amplification in RABL6A depleted p53−/− MEFs resulted from centrosome reduplication via Cdk2-mediated hyperphosphorylation of nucleophosmin (NPM) at threonine-199. Thus, RABL6A prevents centrosome amplification through an ARF/p53-independent mechanism that restricts NPM-T199 phosphorylation. These findings demonstrate an essential role for RABL6A in centrosome regulation and maintenance of chromosome stability in non-transformed cells, key processes that ensure genomic integrity and prevent tumorigenesis.  相似文献   

7.
In cancers, apoptosis evasion through dysregulation of pro-apoptotic and anti-apoptotic intracellular signals is a recurring event. Accordingly, selective inhibition of specific proteins represents an exciting therapeutic opportunity. Myeloid cell leukemia 1 (MCL1) is an anti-apoptotic protein of the BCL-2 family, which is overexpressed in many cancers. Here, we demonstrate that MCL1 can be modified by the small ubiquitin-like modifier (SUMO) at K234 and K238 sites. The SUMOylation of MCL1 can improve its stability by inhibiting the MCL1 ubiquitin-proteasome pathway mediated by the Tripartite motif-containing 11 (TRIM11, a novel MCL1 ubiquitin E3 ligase that we identify in this study). Moreover, SUMOylation of MCL1 increases the proliferation of cancer cells by inhibiting apoptosis. These results suggest that the SUMOylation of MCL1 may play a significant role in the regulation of its function.  相似文献   

8.
Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid (DNA) double-strand breaks (DSBs) by the RNF8/RNF168/HERC2 ubiquitin ligases facilitates restoration of genome integrity by licensing chromatin to concentrate genome caretaker proteins near the lesions. In parallel, SUMOylation of so-far elusive upstream DSB regulators is also required for execution of this ubiquitin-dependent chromatin response. We show that HERC2 and RNF168 are novel DNA damage-dependent SUMOylation targets in human cells. In response to DSBs, both HERC2 and RNF168 were specifically modified with SUMO1 at DSB sites in a manner dependent on the SUMO E3 ligase PIAS4. SUMOylation of HERC2 was required for its DSB-induced association with RNF8 and for stabilizing the RNF8-Ubc13 complex. We also demonstrate that the ZZ Zinc finger in HERC2 defined a novel SUMO-specific binding module, which together with its concomitant SUMOylation and T4827 phosphorylation promoted binding to RNF8. Our findings provide novel insight into the regulatory complexity of how ubiquitylation and SUMOylation cooperate to orchestrate protein interactions with DSB repair foci.  相似文献   

9.
The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134–347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression.  相似文献   

10.
The tumor suppressor ARF plays an essential role in the cellular response to oncogenic stress mainly through activation of p53. Nucleophosmin (NPM), a multifunctional protein, forms a stable protein complex with ARF in the nucleolus and protects ARF from the proteasome-mediated degradation. Notably, NPM is mutated in about one third of acute myeloid leukaemia (AML) patients and these mutations lead to aberrant cytoplasmic dislocation of nucleophosmin (NPM-c). Cytoplasmic NPM mutants lose their abilities to retain ARF in the nucleolus and fail to stabilize ARF. Thus, activation of the ARF-p53 axis is significantly compromised in these AML cells. We have recently identified the ubiquitin ligase of ARF (ULF) as a key factor that controls ARF turnover in human cells. Here, we found that the steady levels of both ARF and p53 are very low in human acute myeloid leukaemia OCI-AML3 cells expressing cytoplamsic dislocated nucleophosmin (NPM-c). As expected, ARF is very unstable and rapidly degraded by proteasome. Nevertheless, ULF knockdown stabilizes ARF and reactivates p53 responses in these AML cells. These results further demonstrate that ULF is a bona fide E3 ligase for ARF and also suggest that ULF is an important target for activating the ARF-p53 axis in human AML cells.  相似文献   

11.
The tumor suppressor ARF plays an essential role in the cellular response to oncogenic stress mainly through activation of p53. Nucleophosmin (NPM), a multifunctional protein, forms a stable protein complex with ARF in the nucleolus and protects ARF from the proteasome-mediated degradation. Notably, NPM is mutated in about one third of acute myeloid leukaemia (AML) patients and these mutations lead to aberrant cytoplasmic dislocation of nucleophosmin (NPM-c). Cytoplasmic NPM mutants lose their abilities to retain ARF in the nucleolus and fail to stabilize ARF. Thus, activation of the ARF-p53 axis is significantly compromised in these AML cells. We have recently identified the ubiquitin ligase of ARF (ULF) as a key factor that controls ARF turnover in human cells. Here, we found that the steady levels of both ARF and p53 are very low in human acute myeloid leukaemia OCI-AML3 cells expressing cytoplamsic dislocated nucleophosmin (NPM-c). As expected, ARF is very unstable and rapidly degraded by proteasome. Nevertheless, ULF knockdown stabilizes ARF and reactivates p53 responses in these AML cells. These results further demonstrate that ULF is a bona fide E3 ligase for ARF and also suggest that ULF is an important target for activating the ARF-p53 axis in human AML cells.Key words: ARF, ubiquitination, ULF, p53, NPM, B23, NPM-c  相似文献   

12.
The modification of proteins by the small ubiquitin‐like modifier (SUMO) is known to regulate an increasing array of cellular processes. SUMOylation of the mitochondrial fission GTPase dynamin‐related protein 1 (DRP1) stimulates mitochondrial fission, suggesting that SUMOylation has an important function in mitochondrial dynamics. The conjugation of SUMO to its substrates requires a regulatory SUMO E3 ligase; however, so far, none has been functionally associated with the mitochondria. By using biochemical assays, overexpression and RNA interference experiments, we characterized the mitochondrial‐anchored protein ligase (MAPL) as the first mitochondrial‐anchored SUMO E3 ligase. Furthermore, we show that DRP1 is a substrate for MAPL, providing a direct link between MAPL and the fission machinery. Importantly, the large number of unidentified mitochondrial SUMO targets suggests a global role for SUMOylation in mitochondrial function, placing MAPL as a crucial component in the regulation of multiple conjugation events.  相似文献   

13.
ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor   总被引:15,自引:0,他引:15  
Chen D  Kon N  Li M  Zhang W  Qin J  Gu W 《Cell》2005,121(7):1071-1083
Although the importance of the ARF tumor suppressor in p53 regulation is well established, numerous studies indicate that ARF also suppresses cell growth in a p53/Mdm2-independent manner. To understand the mechanism of ARF-mediated tumor suppression, we identified a ubiquitin ligase, ARF-BP1, as a key factor associated with ARF in vivo. ARF-BP1 harbors a signature HECT motif, and its ubiquitin ligase activity is inhibited by ARF. Notably, inactivation of ARF-BP1, but not Mdm2, suppresses the growth of p53 null cells in a manner reminiscent of ARF induction. Surprisingly, in p53 wild-type cells, ARF-BP1 directly binds and ubiquitinates p53, and inactivation of endogenous ARF-BP1 is crucial for ARF-mediated p53 stabilization. Thus, our study modifies the current view of ARF-mediated p53 activation and reveals that ARF-BP1 is a critical mediator of both the p53-independent and p53-dependent tumor suppressor functions of ARF. As such, ARF-BP1 may serve as a potential target for therapeutic intervention in tumors regardless of p53 status.  相似文献   

14.
15.
Sun H  Leverson JD  Hunter T 《The EMBO journal》2007,26(18):4102-4112
The function of small ubiquitin-like modifier (SUMO)-binding proteins is key to understanding how SUMOylation regulates cellular processes. We identified two related Schizosaccharomyces pombe proteins, Rfp1 and Rfp2, each having an N-terminal SUMO-interacting motif (SIM) and a C-terminal RING-finger domain. Genetic analysis shows that Rfp1 and Rfp2 have redundant functions; together, they are essential for cell growth and genome stability. Mammalian RNF4, an active ubiquitin E3 ligase, is an orthologue of Rfp1/Rfp2. Rfp1 and Rfp2 lack E3 activity but recruit Slx8, an active RING-finger ubiquitin ligase, through a RING-RING interaction, to form a functional E3. RNF4 complements the growth and genomic stability defects of rfp1rfp2, slx8, and rfp1rfp2slx8 mutant cells. Both the Rfp-Slx8 complex and RNF4 specifically ubiquitylate artificial SUMO-containing substrates in vitro in a SUMO binding-dependent manner. SUMOylated proteins accumulate in rfp1rfp2 double-null cells, suggesting that Rfp/Slx8 proteins may promote ubiquitin-dependent degradation of SUMOylated targets. Hence, we describe a family of SIM-containing RING-finger proteins that potentially regulates eukaryotic genome stability through linking SUMO-interaction with ubiquitin conjugation.  相似文献   

16.
蛋白质SUMO化修饰是一种调控蛋白命运的关键修饰方式, 广泛参与植物生长发育及逆境胁迫响应。SUMO化修饰过程主要由激活酶(E1)-结合酶(E2)-连接酶(E3)组成的级联酶促反应催化, 其关键酶组分将SUMO分子缀合至底物蛋白的赖氨酸残基, 形成共价异肽键以完成SUMO化修饰过程。该文报道了1种植物蛋白质SUMO化修饰体外高效检测系统, 通过在大肠杆菌(Escherichia coli)中构建拟南芥(Arabidopsis thaliana) SUMO化修饰的关键通路实现对底物蛋白的SUMO化修饰, 结果可通过免疫印迹进行检测。该系统可以简化植物蛋白质SUMO化修饰的检测流程, 为植物细胞SUMO化修饰的功能研究提供了有力工具。  相似文献   

17.
SUMOylation has been considered as an important mechanism to regulate multiple cellular processes, including inflammation. TAB2 (TAK1-binding protein 2) is an upstream adaptor protein in the IL-1 signaling pathway. Covalent modifications of TAB2 have not been well studied. In this study, we demonstrated that TAB2 could be modified by SUMO. Using Ubc9 (SUMO-conjugating enzyme) fusion and mutation analysis, we identified evolutionarily conserved lysine 329 as the major SUMOylation site of TAB2. PIAS3, a SUMO E3 ligase, preferentially interacted with and promoted its SUMOylation. Interestingly, block of SUMOylation by mutation of lysine 329 enhanced the activity of TAB2, as reflected by AP-1 luciferase reporter assays. Taken together, these results suggest that SUMOylation may serve as a novel mechanism for the regulation of TAB2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号