首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Previous structural studies in our laboratory on lipooligosaccharide (LOS) inner core oligosaccharide (OS) had identified structures from several strains of Histophilus (Haemophilus) somni (738, 2336, 1P, 129Pt). Recently a type strain 8025 was proposed for this species and we therefore sought to determine the core OS structure of this H. somni strain. Core OS was isolated by standard methods from Westphal purified LOS. Structural information was established by a combination of monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the core OS was determined on the basis of the combined data from these experiments: [carbohydrates: see text]. The structure determined contains aspects of other Histophilus somni core OS structures, such as the beta-Gal attached at the 2-position of Hep II (2336), PEtn only at the 6-position of Hep II (738, 129Pt) and a lactose extension from Hep I (1P). Since genetic manipulation has been achieved with this strain, the identification of the core OS structure will enable experiments designed to identify the role of glycosyltransferases involved in LOS biosynthesis.  相似文献   

2.
Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis. A sample preparation methodology previously reported for Escherichia coli lipopolysaccharide (LPS) employing deposition of untreated LOS on a thin layer of a film composed of 2,4,6-trihydroxyacetophenone and nitrocellulose was used. Prominent peaks were observed corresponding to molecular ions and to fragment ions primarily formed by cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and the lipid A (LA). Analyses of these data and comparison with spectra of the corresponding O-deacylated or hydrogen fluoride-treated LOS enabled the detection of novel species that apparently differed by the expression of up to three phosphates with one or more phosphoethanolamine (PEA) groups on the LA. We found that the heterogeneity profile of acylation and phosphorylation correlates with the induction of proinflammatory cytokines in THP-1 monocytic cells. This methodology enabled us to rapidly profile components of structural variants of native LOS that are of importance biologically.  相似文献   

3.
The emergence of resistance to vancomycin and related glycopeptide antibiotics is spurring efforts to develop new antimicrobial therapeutics. High-resolution structural information about antibiotic-ligand recognition should prove valuable in the rational design of improved drugs. We have determined the X-ray crystal structure of the complex of vancomycin with N-acetyl-d-Ala-d-Ala, a mimic of the natural muramyl peptide target, and refined this structure at a resolution of 1.3 Å to R and Rfree values of 0.172 and 0.195, respectively. The crystal asymmetric unit contains three back-back vancomycin dimers; two of these dimers participate in ligand-mediated face-face interactions that produce an infinite chain of molecules running throughout the crystal. The third dimer packs against the side of a face-face interface in a tight “side-side” interaction that involves both polar contacts and burial of hydrophobic surface. The trimer of dimers found in the asymmetric unit is essentially identical to complexes seen in three other crystal structures of glycopeptide antibiotics complexed with peptide ligands. These four structures are derived from crystals belonging to different space groups, suggesting that the trimer of dimers may not be simply a crystal packing artifact and prompting us to ask if ligand-mediated oligomerization could be observed in solution. Using size-exclusion chromatography, dynamic light scattering, and small-angle X-ray scattering, we demonstrate that vancomycin forms discrete supramolecular complexes in the presence of tripeptide ligands. Size estimates for these complexes are consistent with assemblies containing four to six vancomycin monomers.  相似文献   

4.
D E Kerwood  H Schneider  R Yamasaki 《Biochemistry》1992,31(51):12760-12768
We studied the structure of the lipooligosaccharide (LOS) that is produced by a variant A of strain MS11mk. This variant produces a single LOS that is recognized by monoclonal antibody (MAb) 2-1-L8. In a recent study of the pathogenesis of Neisseria gonorrhoeae in male volunteers, variant A gave rise to other phase variants that produce higher molecular weight LOSs, and these LOS were associated with virulence. Definition of the structure of the variant A LOS is important to understand the biosynthesis of LOS and its expression in vivo. The dephosphorylated oligosaccharide (OS) structure derived from the variant A LOS was analyzed by two-dimensional NMR and methylation analysis. The OS structure was found to be a truncated form of the LOS produced by strain F62 [Yamasaki et al. (1991) Biochemistry 30, 10566-10575]; the variant A OS is a hexamer, a beta-lactosyl residue linked to a tetrasaccharide: Gal beta 1-->4Glc beta 1-->4[GlcNAc alpha 1-->2Hep alpha 1-->3]Hep alpha 1-->KDO. We determined that the variant A LOS is a precursor for the synthesis of higher MW LOS. We also studied expression of the MAb 2-1-L8-defined epitope present on the variant A LOS. Our data indicate that the MAb-defined epitope is not a linear beta-lactosyl residue but its specificity is directed toward the phosphorylated GlcNAc-Hep-Hep residue. Since this MAb binds to gonococci, at least part of the phosphorylated diheptose area is exposed on the gonococcal surface.  相似文献   

5.
We report the molecular and functional characterization of a new alpha chain of laminin in Drosophila. The new laminin chain appears to be the Drosophila counterpart of both vertebrate alpha2 (also called merosin) and alpha1 chains, with a slightly higher degree of homology to alpha2, suggesting that this chain is an ancestral version of both alpha1 and alpha2 chains. During embryogenesis, the protein is associated with basement membranes of the digestive system and muscle attachment sites, and during larval stage it is found in a specific pattern in wing and eye discs. The gene is assigned to a locus called wing blister (wb), which is essential for embryonic viability. Embryonic phenotypes include twisted germbands and fewer pericardial cells, resulting in gaps in the presumptive heart and tracheal trunks, and myotubes detached from their target muscle attachment sites. Most phenotypes are in common with those observed in Drosophila laminin alpha3, 5 mutant embryos and many are in common with those observed in integrin mutations. Adult phenotypes show blisters in the wings in viable allelic combinations, similar to phenotypes observed in integrin genes. Mutation analysis in the eye demonstrates a function in rhabdomere organization. In summary, this new laminin alpha chain is essential for embryonic viability and is involved in processes requiring cell migration and cell adhesion.  相似文献   

6.
The functional role of CD36 protein detected in mitochondrial fractions in long chain fatty acid (LCFA) oxidation is unclear due to conflicting results obtained in Cd36 knockout mice and experiments using sulfo-N-succinimidyl oleate (SSO) for inhibition of CD36 mediated LCFA transport. We investigated effect of SSO on mitochondrial respiration and found that SSO substantially inhibits not only LCFA oxidation, but also oxidation of flavoprotein- and NADH-dependent substrates and generation of mitochondrial membrane potential. Experiments in rat liver, heart and kidney mitochondria demonstrated a direct effect on mitochondrial respiratory chain with the most pronounced inhibition of the complex III (IC50 4 μM SSO). The results presented here show that SSO is a potent and irreversible inhibitor of mitochondrial respiratory chain.  相似文献   

7.
Our work with almond peptide N-glycosidase A made us interested also in the alpha1,3/4-fucosidase which is used as a specific reagent for glycoconjugate analysis. The enzyme was purified to presumed homogeneity by a series of chromatographic steps including dye affinity and fast-performance anion exchange chromatography. The 63 kDa band was analyzed by tandem mass spectrometry which yielded several partial sequences. A homology search retrieved the hypothetical protein Q8GW72 from Arabidopsis thaliana. This protein has recently been described as being specific for alpha1,2-linkages. However, cDNA cloning and expression in Pichia pastoris of the A. thaliana fucosidase showed that it hydrolyzed fucose in 3- and 4-linkage to GlcNAc in Lewis determinants whereas neither 2-linked fucose nor fucose in 3-linkage to the innermost GlcNAc residue were attacked. This first cloning of a plant alpha1,3/4-fucosidase also confirmed the identity of the purified almond enzyme and thus settles the notorious uncertainty about its molecular mass. The alpha1,3/4-fucosidase from Arabidopsis exhibited striking sequence similarity with an enzyme of similar substrate specificity from Streptomyces sp. (Q9Z4I9) and with putative proteins from rice.  相似文献   

8.
alpha1,2-linked fucose can be found on xyloglucans which are the main hemicellulose compounds of dicotyledons. The fucosylated nonasaccharide XXFG derived from xyloglucans plays a role in cell signaling and is active at nanomolar concentrations. The plant enzyme acting on this alpha1,2-linked fucose residues has been previously called fucosidase II; here we report on the molecular identification of a gene from Arabidopsis thaliana (At4g34260 hereby designed AtFuc95A) encoding this enzyme. Analysis of the predicted protein composed of 843 amino acids shows that the enzyme belongs to the glycoside hydrolase family 95 and has homologous sequences in different monocotyledons and dicotyledons. The enzyme was expressed recombinantly in Nicotiana bentamiana, a band was visible by Coomassie blue staining and its identity with the alpha1,2-fucosidase was assessed by an antibody raised against a peptide from this enzyme as well as by peptide-mass mapping. The recombinant AtFuc95A is active towards 2-fucosyllactose with a Km of 0.65 mM, a specific activity of 110 mU/mg and a pH optimum of 5 but does not cleave alpha1,3, alpha1,4 or alpha1,6-fucose containing oligosaccharides and p-nitrophenyl-fucose. The recombinant enzyme is able to convert the xyloglucan fragment XXFG to XXLG, and is also active against xyloglucan polymers with a Km value for fucose residues of 1.5mM and a specific activity of 36 mU/mg. It is proposed that the AtFuc95A gene has a role in xyloglucan metabolism.  相似文献   

9.
Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and alpha cells select axial sites; a/alpha cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an alpha strain using pseudohyphal growth as an assay. We found that a and alpha mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345-1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane.  相似文献   

10.
The modular nature of protein folds suggests that present day proteins evolved via duplication and recombination of smaller functional elements. However, the reconstruction of these putative evolutionary pathways after many millions of years of evolutionary drift has thus far proven difficult, with all attempts to date failing to produce a functional protein. Tachylecin-2 is a monomeric 236 amino acid, five-bladed beta-propeller with five sugar-binding sites. This protein was isolated from a horseshoe crab that emerged ca 500 million years ago. The modular, yet ancient, nature of Tachylectin-2 makes it an excellent model for exploring the evolution of proteins from smaller subunits. To this end, we generated genetically diverse libraries by incremental truncation of the Tachylectin-2 gene and screened them for functional lectins. A number of approximately 100 amino acid residue segments were isolated with the ability to assemble into active homo-pentamers. The topology of most of these segments follows a "hidden" module that differs from the modules observed in wild-type Tachylectin-2, yet their biophysical properties and sugar binding activities resemble the wild-type's. Since the pentamer's molecular mass is twofold higher than the wild-type (approximately 500 amino acid residues), the structure of these oligomeric forms is likely to also differ. Our laboratory evolution experiments highlight the versatility and modularity of the beta-propeller fold, while substantiating the hypothesis that proteins with high internal symmetry, such as beta-propellers, evolved from short, functional gene segments that, at later stages, duplicated, fused, and rearranged, to yield the folds we recognise today.  相似文献   

11.
Hemicellulose polymers were isolated from Argania spinosa leaf cell walls by sequential extractions with alkali. The structure of the two main polymers, xylan and xyloglucan, was investigated by enzyme degradation with specific endoglycosidases followed by analysis of the resulting fragments by high performance anion exchange chromatography (HPAEC) and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). The results show that A. spinosa xylan is composed of a beta-(1-->4)-linked-D-xylopyranose backbone substituted with 4-O-methyl-D-glucuronic acid residues. Xyloglucan oligosaccharide subunits were generated by treatment with an endo-(1-->4)-beta-D-glucanase of the xyloglucan-rich hemicellulosic fractions. MALDI-TOF mass spectra and HPAE-PAD chromatography of the pool of endoglucanase-generated xyloglucan oligomers indicated that A. spinosa cell wall contains a XXXG-type xyloglucan. In addition to XXXG, XXFG, XLXG/XXLG, XLFG fragments previously characterised in various plants, a second group of XXXG-type fragments was detected. The primary structure of the major subunit was determined by a combination of sugar analysis, methylation analysis, post-source decay (PSD) fragment analysis of MALDI-TOF MS and 1H NMR spectroscopy. This fragment, termed XUFG, contains a novel beta-D-Xylp-(1-->2)-alpha-D-Xylp side chain linked to C-6 of the second glucose unit from the nonreducing end of the cellotetraose sequence.  相似文献   

12.
Lipooligosaccharide (LOS), a major component of the outer membrane of Moraxella catarrhalis, consists of two major moieties: a lipid A and a core oligosaccharide (OS). The core OS can be dissected into a linker and three OS chains. To gain an insight into the biological activities of the LOS molecules of M. catarrhalis, we used a random transposon mutagenesis approach with an LOS specific monoclonal antibody to construct a serotype A O35Elgt3 LOS mutant. MALDI-TOF-MS of de-O-acylated LOS from the mutant and glycosyl composition, linkage, and NMR analysis of its OS indicated that the LOS contained a truncated core OS and consisted of a Glc-Kdo(2) (linker)-lipid A structure. Phenotypic analysis revealed that the mutant was similar to the wild-type strain in its growth rate, toxicity and susceptibility to hydrophobic reagents. However, the mutant was sensitive to bactericidal activity of normal human serum and had a reduced adherence to human epithelial cells. These data, combined with our previous data obtained from mutants which contained only lipid A or lacked LOS, suggest that the complete OS chain moiety of the LOS is important for serum resistance and adherence to epithelial cells, whereas the linker moiety is critical for maintenance of the outer membrane integrity and stability to preserve normal cell growth. Both the lipid A and linker moieties contribute to the LOS toxicity.  相似文献   

13.
14.
Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted genital ulcer disease. Different lipooligosaccharide (LOS) structures have been identified from H. ducreyi strain 35000, including those sialylated glycoforms. Surface LOS of H. ducreyi is considered an important virulence factor that is involved in ulcer formation, cell adhesion, and invasion of host tissue. Gene Hd0686 of H. ducreyi, designated lst (for lipooligosaccharide sialyltransferase), was identified to encode an alpha2,3-sialyltransferase that is important for the formation of sialylated LOS. Here, we show that Hd0053 of H. ducreyi genomic strain 35000HP, the third member of the glycosyltransferase family 80 (GT80), also encodes an alpha2,3-sialyltransferase that may be important for LOS sialylation.  相似文献   

15.
Many insects pass the winter in an arrested developmental stage called diapause, either as eggs, as pupae, or even as adults. Exposure to the prolonged cold of winter is required to permit awakening from diapause in the spring. In the diapause eggs of the silkworm Bombyx mori, a metalloglycoprotein, esterase A4 (EA4), has been suggested to serve as a cold-duration clock because its characteristic ATPase activity is transiently elevated at the end of the necessary cold period. This timer property of EA4 is known to start with the dissociation of an inhibitory peptide (called “peptidyl inhibitory needle”) under cold conditions, but its time-measuring mechanism is completely unknown. Here we present the crystal structures and functional properties of EA4 with and without glycosylation. We show that EA4 is a homodimeric ATPase, with each subunit consisting of a copper-zinc superoxide dismutase fold. There is an additional short N-terminal region that is capable of binding one more copper ion, suggesting a timer mechanism in which this ion is involved. The sugar chain appears to reinforce the binding of peptidyl inhibitory needle, which may in turn stabilize the initial conformation of the N-terminal domain, explaining the requirement for glycosylation and for the peptide to set the clock.  相似文献   

16.
Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer''s resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems.  相似文献   

17.
We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi (Apteryx owenii, LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D''Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D''Urville birds among extant LSK. The Ne/NC ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.  相似文献   

18.
The present study investigated the involvement of host sialic acids in the erythrocyte infection by two equine Babesia parasites, Babesia equi and Babesia caballi. We observed that the in vitro growth of both parasites is influenced by the removal of sialic acids from the surface of equine erythrocytes (RBC). When the parasites were cultured with neuraminidase (Nm, EC 3.2.1.18)-treated RBC, in which alpha2-3-linked sialic acid residues were removed from four membrane proteins of the RBC, B. caballi showed a significant inhibition of the erythrocyte invasion, while the intracellular development of B. equi seemed to be significantly affected. The possible involvement of host sialic acid in the erythrocyte invasion by B. caballi was also supported by a significant reduction in the parasite growth accompanied by an increased number of extracellular merozoites after the addition of exogenous 3'-sialyllactose (Neu5Acalpha(2-3)Galbeta(1-4)Glc) into the culture. These results suggest that the alpha2-3-linked sialic acid residues on host RBC play important roles in the erythrocyte infections by B. caballi and B. equi.  相似文献   

19.
Neisserial lipooligosaccharides (LOSs) are a family of complex cell surface glycolipids. We used mass spectrometry techniques (electrospray ionization, collision-induced dissociation, and multiple step), combined with fluorophore-assisted carbohydrate electrophoresis monosaccharide composition analysis, to determine the structure of the two low-molecular-mass LOS molecules (LOSI and LOSII) expressed by Neisseria subflava 44. We determined that LOSI contains one glucose on both the alpha and beta chains. LOSII is structurally related to LOSI and differs from it by the addition of a hexose (either glucose or galactose) on the alpha chain. LOSI and LOSII were able to bind monoclonal antibody (MAb) 25-1-LC1 when analyzed by Western blotting experiments. We used a set of genetically defined Neisseria gonorrhoeae mutants that expressed single defined LOS epitopes and a group of Neisseria meningitidis strains that expresses chemically defined LOS components to determine the structures recognized by MAb 25-1-LC1. We found that extensions onto the beta-chain glucose of LOSI block the recognition by this MAb, as does further elongation from the LOSII alpha chain. The LOSI structure was determined to be the minimum structure that is recognized by MAb 25-1-LC1.  相似文献   

20.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号