首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu F  Cao Y  Xiao F  Zhang J  Li H 《Current microbiology》2007,55(1):20-24
The aim of this study is to enhance 3-hydroxyhexanoate (3HHx) fractions of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), abbreviated as PHBHHx, through site-directed mutagenesis of Aeromonas hydrophila enoyl Coenzyme A hydratase (PhaJAh). Two amino acids (Leu-65 and Val-130) were selected as a substitutional site based on the structural information of PhaJAh. The purified proteins from the wild-type enzyme and mutants were used to determine hydratase activities. Hydratase activities of four single-mutation enzymes were similar to those of the wild type PhaJAh, while hydratase activities of two double-mutation enzymes were much lower. In addition, the mutated phaJ Ah was individually co-transformed into E. coli BL21 (DE3) together with pFH21, which carried the PHA synthase (PhaCAh) gene from A. hydrophila. The recombinant E. coli harboring plasmid pETJ1 (L65A), pETJ2 (L65V) or plasmid pETJ3 (V130A) synthesized the enhanced 3HHx fractions of PHBHHx from dodecanoate, indicating that Leu-65 and Val-130 of PhaJAh play an important role in determining the acyl chain length substrate specificity. The mutated PhaJAh (L65A, L65V, or V130A) provided higher 3HHx precursors for PHA synthase, resulting in the enhanced 3HHx fractions of PHBHHx. It is possible to change the acyl chain length substrate specificity of PhaJ through site-directed mutagenesis and produce PHBHHx with a wider range of alterable monomer composition.  相似文献   

2.
Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJAc) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid β-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJAc by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJAc revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C8) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C12) was examined by using the mutated PhaJAc as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1Ps). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C8) and 3-hydroxydecanoate (C10) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.  相似文献   

3.
A genome survey of polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha H16 detected the presence of 16 orthologs of R-specific enoyl coenzyme A (enoyl-CoA) hydratase, among which three proteins shared high homologies with the enzyme specific to enoyl-CoAs of medium chain length encoded by phaJ4 from Pseudomonas aeruginosa (phaJ4(Pa)). The recombinant forms of the three proteins, termed PhaJ4a(Re) to PhaJ4c(Re), actually showed enoyl-CoA hydratase activity with R specificity, and the catalytic efficiencies were elevated as the substrate chain length increased from C(4) to C(8). PhaJ4a(Re) and PhaJ4b(Re) showed >10-fold-higher catalytic efficiency than PhaJ4c(Re). The functions of the new PhaJ4 proteins were investigated using previously engineered R. eutropha strains as host strains; these strains are capable of synthesizing poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from soybean oil. Deletion of phaJ4a(Re) from the chromosome resulted in significant decrease of 3HHx composition in the accumulated copolyester, whereas no change was observed with deletion of phaJ4b(Re) or phaJ4c(Re), indicating that only PhaJ4a(Re) was one of the major enzymes supplying the (R)-3HHx-CoA monomer through β-oxidation. Introduction of phaJ4a(Re) or phaJ4b(Re) into the R. eutropha strains using a broad-host-range vector enhanced the 3HHx composition of the copolyesters, but the introduction of phaJ4c(Re) did not. The two genes were then inserted into the pha operon on chromosome 1 of the engineered R. eutropha by homologous recombination. These modifications enabled the biosynthesis of P(3HB-co-3HHx) composed of a larger 3HHx fraction without a negative impact on cell growth and PHA production on soybean oil, especially when phaJ4a(Re) or phaJ4b(Re) was tandemly introduced with phaJ(Ac) from Aeromonas caviae.  相似文献   

4.
(R)-Specific enoyl-coenzyme A (enoyl-CoA) hydratases (PhaJs) are capable of supplying monomers from fatty acid β-oxidation to polyhydroxyalkanoate (PHA) biosynthesis. PhaJ1Pp from Pseudomonas putida showed broader substrate specificity than did PhaJ1Pa from Pseudomonas aeruginosa, despite sharing 67% amino acid sequence identity. In this study, the substrate specificity characteristics of two Pseudomonas PhaJ1 enzymes were investigated by site-directed mutagenesis, chimeragenesis, X-ray crystallographic analysis, and homology modeling. In PhaJ1Pp, the replacement of valine with isoleucine at position 72 resulted in an increased preference for enoyl-coenzyme A (CoA) elements with shorter chain lengths. Conversely, at the same position in PhaJ1Pa, the replacement of isoleucine with valine resulted in an increased preference for enoyl-CoAs with longer chain lengths. These changes suggest a narrowing and broadening in the substrate specificity range of the PhaJ1Pp and PhaJ1Pa mutants, respectively. However, the substrate specificity remains broader in PhaJ1Pp than in PhaJ1Pa. Additionally, three chimeric PhaJ1 enzymes, composed from PhaJ1Pp and PhaJ1Pa, all showed significant hydratase activity, and their substrate preferences were within the range exhibited by the parental PhaJ1 enzymes. The crystal structure of PhaJ1Pa was determined at a resolution of 1.7 Å, and subsequent homology modeling of PhaJ1Pp revealed that in the acyl-chain binding pocket, the amino acid at position 72 was the only difference between the two structures. These results indicate that the chain-length specificity of PhaJ1 is determined mainly by the bulkiness of the amino acid residue at position 72, but that other factors, such as structural fluctuations, also affect specificity.  相似文献   

5.
The use of (R)-specific enoyl-coenzyme A (CoA) hydratase (PhaJ) provides a powerful tool for polyhydroxyalkanoate (PHA) synthesis from fatty acids or plant oils in recombinant bacteria. PhaJ provides monomer units for PHA synthesis from the fatty acid ß-oxidation cycle. Previously, two phaJ genes (phaJ1Pa and phaJ2Pa) were identified in Pseudomonas aeruginosa. This report identifies two new phaJ genes (phaJ3Pa and phaJ4Pa) in P. aeruginosa through a genomic database search. The abilities of the four PhaJPa proteins and the (R)-3-hydroxyacyl-acyl carrier protein [(R)-3HA-ACP] dehydrases, FabAPa and FabZPa, to supply monomers from enoyl-CoA substrates for PHA synthesis were determined. The presence of either PhaJ1Pa or PhaJ4Pa in recombinant Escherichia coli led to the high levels of PHA accumulation (as high as 36–41 wt.% in dry cells) consisting of mainly short- (C4–C6) and medium-chain-length (C6–C10) 3HA units, respectively. Furthermore, detailed characterizations of PhaJ1Pa and PhaJ4Pa were performed using purified samples. Kinetic analysis revealed that only PhaJ4Pa exhibits almost constant maximum reaction rates (Vmax) irrespective of the chain length of the substrates. The assay for stereospecific hydration revealed that, unlike PhaJ1Pa, PhaJ4Pa has relatively low (R)-specificity. These hydratases may be very useful as monomer-suppliers for the synthesis of designed PHAs in recombinant bacteria.  相似文献   

6.
We investigated the expression of (R)-specific enoyl coenzyme A hydratase (PhaJ) in Pseudomonas putida KT2440 accumulating polyhydroxyalkanoate (PHA) from sodium octanoate in order to identify biosynthesis pathways of PHAs from fatty acids in pseudomonads. From a database search through the P. putida KT2440 genome, an additional phaJ gene homologous to phaJ4 Pa from Pseudomonas aeruginosa, termed phaJ4 Pp, was identified. The gene products of phaJ1 Pp, which was identified previously, and phaJ4 Pp were confirmed to be functional in recombinant Escherichia coli on PHA synthesis from sodium dodecanoate. Cytosolic proteins from P. putida grown on sodium octanoate were subjected to anion exchange chromatography and one of the eluted fractions with hydratase activity included PhaJ4Pp, as revealed by western blot analysis. These results strongly suggest that PhaJ4Pp forms a channeling route from β-oxidation to PHA biosynthesis in P. putida. Moreover, the substrate specificity of PhaJ1Pp was suggested to be different from that of PhaJ1Pa from P. aeruginosa although these two proteins share 67% amino acid sequence identity.  相似文献   

7.
To study membrane topology and mechanism for substrate specificity, we truncated residues 2-24 in microsomal cytochrome P450 7A1 (P450 7A1) and introduced conservative and nonconservative substitutions at positions 214-227. Heterologous expression in Escherichia coli was followed by investigation of the subcellular distribution of the mutant P450s and determination of the kinetic and substrate binding parameters for cholesterol. The results indicate that a hydrophobic region, comprising residues 214-227, forms a secondary site of attachment to the membrane in P450 7A1 in addition to the NH(2)-terminal signal-anchor sequence. There are two groups of residues at this enzyme-membrane interface. The first are those whose mutation results in more cytosolic P450 (Val-214, His-225, and Met-226). The second group are those whose mutation leads to more membrane-bound P450 (Phe-215, Leu-218, Ile-224, and Phe-227). In addition, the V214A, V214L, V214T, F215A, F215L, F215Y, L218I, L218V, V219T, and M226A mutants showed a 5-12-fold increased K(m) for cholesterol. The k(cat) of the V214A, V214L, V219T, and M226A mutants was increased up to 1.8-fold, and that of the V214T, F215A, F215L, F215Y, L218I, and L218V mutants was decreased 3-10.5-fold. Based on analysis of these mutations we suggest that cholesterol enters P450 7A1 through the membrane, and Val-214, Phe-215, and Leu-218 are the residues located near the point of cholesterol entry. The results provide an understanding of both the P450 7A1-membrane interactions and the mechanism for substrate specificity.  相似文献   

8.
Y W Zhang  X Y Li  H Sugawara  T Koyama 《Biochemistry》1999,38(44):14638-14643
Heptaprenyl diphosphate synthase of Bacillus subtilis is composed of two dissociable heteromeric subunits, component I and component II. Component II has highly conserved regions typical of (E)-prenyl diphosphate synthases, but it shows no prenyltransferase activity alone unless it is combined with component I. Alignment of amino acid sequences for component I and the corresponding subunits of Bacillus stearothermophilus heptaprenyl diphosphate synthase and Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase shows three regions of high similarity. To elucidate the role of these regions of component I during catalysis, 13 of the conserved amino acid residues in these regions were selected for substitution by site-directed mutagenesis. Kinetic studies indicated that substitutions of Val-93 with Gly, Leu-94 with Ser, and Tyr-104 with Ser resulted in 3-10-fold increases of K(m) values for the allylic substrate and 5-15-fold decreases of V(max) values compared to those of the wild-type enzyme. The three mutated enzymes, V93G, L94S, and Y104S, showed little binding affinity to the allylic substrate in the membrane filter assay. Furthermore, product analyses showed that D97A yielded shorter chain prenyl diphosphates as the main product, while Y103S gave the final product with a C(40) prenyl chain length. These results suggest that some of the conserved residues in region B of component I are involved in the binding of allylic substrate as well as determining the chain length of the enzymatic reaction product.  相似文献   

9.
CYP24A1 is a mitochondrial cytochrome P450 (CYP) that catabolizes 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)) to different products: calcitroic acid or 1α,25-(OH)(2)D(3)-26,23-lactone via multistep pathways commencing with C24 and C23 hydroxylation, respectively. Despite the ability of CYP24A1 to catabolize a wide range of 25-hydroxylated analogs including 25-hydroxyvitamin D(3), the enzyme is unable to metabolize the synthetic prodrug, 1α-hydroxyvitamin D(3) (1α-OH-D(3)), presumably because it lacks a C25-hydroxyl. In the current study we show that a single V391L amino acid substitution in the β3a-strand of human CYP24A1 converts this enzyme from a catabolic 1α,25-(OH)(2)D(3)-24-hydroxylase into an anabolic 1α-OH-D(3)-25-hydroxylase, thereby forming the hormone, 1α,25-(OH)(2)D(3). Furthermore, because the mutant enzyme retains its basal ability to catabolize 1α,25-(OH)(2)D(3) via C24 hydroxylation, it can also make calcitroic acid. Previous work has shown that an A326G mutation is responsible for the regioselectivity differences observed between human (primarily C24-hydroxylating) and opossum (C23-hydroxylating) CYP24A1. When the V391L and A326G mutations were combined (V391L/A326G), the mutant enzyme continued to form 1α,25-(OH)(2)D(3) from 1α-OH-D(3), but this initial product was diverted via the C23 hydroxylation pathway into the 26,23-lactone. The relative position of Val-391 in the β3a-strand of a homology model and the crystal structure of rat CYP24A1 is consistent with hydrophobic contact of Val-391 and the substrate side chain near C21. We interpret that the substrate specificity of V391L-modified human CYP24A1 toward 1α-OH-D(3) is enabled by an altered contact with the substrate side chain that optimally positions C25 of the 1α-OH-D(3) above the heme for hydroxylation.  相似文献   

10.
Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ’s function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJYB4) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJYB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJYB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJYB4, which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJYB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.  相似文献   

11.
Acyl-CoA dehydrogenase gene (yafH) of Escherichia coli was expressed together with polyhydroxyalkanoate synthase gene (phaC(Ac)) and (R)-enoyl-CoA hydratase gene (phaJ(Ac)) from Aeromonas caviae. The expression plasmids were introduced into E. coli JM109, DH5 alpha and XL1-blue, respectively. Compared with the strains harboring only phaC(Ac) and phaJ(Ac), all recombinant E. coli strains harboring yafH, phaC(Ac) and phaJ(Ac) accumulated at least four times more poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Cell dry weights produced by all recombinants containing yafH were also considerably higher than that without yafH. The addition of acrylic acid which serves as inhibitor for beta-oxidation and may lead to more precursor supply for PHA synthesis did not result in improved PHBHHx production compared with that of the overexpression of yafH. It appeared that the overexpression of acyl-CoA dehydrogenase gene (yafH) enhanced the supply of enoyl-CoA which is the substrate of (R)-enoyl-CoA hydratase. With the enhanced precursor supply, the recombinants accumulated more PHBHHx.  相似文献   

12.
AMP-activated protein kinase (AMPK) acts as an energy sensor, being activated by metabolic stresses and regulating cellular metabolism. AMPK is a heterotrimer consisting of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It had been reported that the mammalian AMPK alpha subunit contained an autoinhibitory domain (alpha1: residues 313-392) and had little kinase activity. We have found that a conserved short segment of the alpha subunit (alpha1-(313-335)), which includes a predicted alpha-helix, is responsible for alpha subunit autoinhibition. The role of the residues in this segment for autoinhibition was further investigated by systematic site-directed mutation. Several hydrophobic and charged residues, in particular Leu-328, were found to be critical for alpha1 autoinhibition. An autoinhibitory structural model of human AMPK alpha1-(1-335) was constructed and revealed that Val-298 interacts with Leu-328 through hydrophobic bonding at a distance of about 4 A and may stabilize the autoinhibitory conformation. Further mutation analysis showed that V298G mutation significantly activated the kinase activity. Moreover, the phosphorylation level of acetyl-CoA carboxylase, the AMPK downstream substrate, was significantly increased in COS7 cells overexpressing AMPK alpha1-(1-394) with deletion of residues 313-335 (Deltaalpha394) and a V298G or L328Q mutation, and the glucose uptake was also significantly enhanced in HepG2 cells transiently transfected with Deltaalpha394, V298G, or L328Q mutants, which indicated that these AMPK alpha1 mutants are constitutively active in mammalian cells and that interaction between Leu-328 and Val-298 plays an important role in AMPK alpha autoinhibitory function.  相似文献   

13.
Two Pseudomonas aeruginosa genes, termed phaJ1(Pa) and phaJ2(Pa), homologous to the Aeromonas caviae (R)-specific enoyl-CoA hydratase gene (phaJ(Ac)) were cloned using a PCR technique to investigate the monomer-supplying ability for polyhydroxyalkanoate (PHA) synthesis from beta-oxidation cycle. Two expression plasmids for phaJ1(Pa) and phaJ2(Pa) were constructed and introduced into Escherichia coli DH5alpha strain. The recombinants harboring phaJ1(Pa) or phaJ2(Pa) showed high (R)-specific enoyl-CoA hydratase activity with different substrate specificities, that is, specific for short chain-length enoyl-CoA or medium chain-length enoyl-CoA, respectively. In addition, co-expression of these two hydratase genes with PHA synthase gene in E. coli LS5218 resulted in the accumulation of PHA up to 14-29 wt% of cell dry weight from dodecanoate as a sole carbon source. It has been suggested that phaJ1(Pa) and phaJ2(Pa) products have the monomer-supplying ability for PHA synthesis from beta-oxidation cycle.  相似文献   

14.
Park SJ  Lee SY 《Journal of bacteriology》2003,185(18):5391-5397
The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional beta-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the beta-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.  相似文献   

15.
The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the betaA-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four beta-strands (betaA-betaB-betaD-betaC) and two helices (alpha2 and alpha3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C(70) polymer rather than the C(55) polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C(30) intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C(55) product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C(55) product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k(cat) values. W75A showed an 8-fold increase of the FPP K(m) value, and 22-33-fold increases in the IPP K(m) values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release.  相似文献   

16.
Cyclooxygenases (COXs) are the therapeutic targets of nonsteroidal antiinflammatory drugs. Indomethacin (INDO) was one of the first nonsteroidal antiinflammatory drugs to be characterized as a time-dependent, functionally irreversible inhibitor, but the molecular basis of this phenomenon is uncertain. In the crystal structure of INDO bound to COX-2, a small hydrophobic pocket was identified that surrounds the 2'-methyl group of INDO. The pocket is formed by the residues Ala-527, Val-349, Ser-530, and Leu-531. The contribution of this pocket to inhibition was evaluated by altering its volume by mutagenesis of Val-349. The V349A mutation expanded the pocket and increased the potency of INDO, whereas the V349L mutation reduced the size of the pocket and decreased the potency of INDO. Particularly striking was the reversibility of INDO inhibition of the V349L mutant. The 2'-des-methyl analogue of INDO (DM-INDO) was synthesized and tested against wild-type COX-1 and COX-2, as well as the Val-349 mutants. DM-INDO bound to all enzymes tested, but only inhibited wt mCOX-2 and the V349I enzyme. Without the 2'-methyl group anchoring DM-INDO in the active site, the compound was readily competed off of the enzyme by arachidonic acid. The kinetics of inhibition were comparable to the kinetics of binding as evaluated by fluorescence quenching. These results highlight binding of the 2'-methyl of INDO in the hydrophobic pocket as an important determinant of its time-dependent inhibition of COX enzymes.  相似文献   

17.
We are interested in constructing a model for the substrate-binding site of fatty acid elongase-1 3-ketoacyl CoA synthase (FAE1 KCS), the enzyme responsible for production of very long chain fatty acids of plant seed oils. Arabidopsis thaliana and Brassica napus FAE1 KCS enzymes are highly homologous but the seed oil content of these plants suggests that their substrate specificities differ with respect to acyl chain length. We used in vivo and in vitro assays of Saccharomyces cerevisiae-expressed FAE1 KCSs to demonstrate that the B. napus FAE1 KCS enzyme favors longer chain acyl substrates than the A. thaliana enzyme. Domains/residues responsible for substrate specificity were investigated by determining catalytic activity and substrate specificity of chimeric enzymes of A. thaliana and B. napus FAE1 KCS. The N-terminal region, excluding the transmembrane domain, was shown to be involved in substrate specificity. One chimeric enzyme that included A. thaliana sequence from the N terminus to residue 114 and B. napus sequence from residue 115 to the C terminus had substrate specificity similar to that of A. thaliana FAE1 KCS. However, a K92R substitution in this chimeric enzyme changed the specificity to that of the B. napus enzyme without loss of catalytic activity. Thus, this study was successful in identifying a domain involved in determining substrate specificity in FAE1 KCS and in engineering an enzyme with novel activity.  相似文献   

18.
To identify the residues in the carboxyl-terminal region 260-299 of human apolipoprotein E (apoE) that contribute to hypertriglyceridemia, two sets of conserved, hydrophobic amino acids between residues 261 and 283 were mutated to alanines, and recombinant adenoviruses expressing these apoE mutants were generated. Adenovirus-mediated gene transfer of apoE4-mut1 (apoE4 (L261A, W264A, F265A, L268A, V269A)) in apoE-deficient mice (apoE(-/-)) corrected plasma cholesterol levels and did not cause hypertriglyceridemia. In contrast, gene transfer of apoE4-mut2 (apoE4 (W276A, L279A, V280A, V283A)) did not correct hypercholesterolemia and induced mild hypertriglyceridemia. ApoE-induced hyperlipidemia was corrected by co-infection with a recombinant adenovirus expressing human lipoprotein lipase. Both apoE4 mutants caused only a small increase in hepatic very low density lipoprotein-triglyceride secretion. Density gradient ultracentrifugation analysis of plasma and electron microscopy showed that wild-type apoE4 and apoE4-mut2 displaced apoA-I from the high density lipoprotein (HDL) region and promoted the formation of discoidal HDL, whereas the apoE4-mut1 did not displace apoA-I from HDL and promoted the formation of spherical HDL. The findings indicate that residues Leu-261, Trp-264, Phe-265, Leu-268, and Val-269 of apoE are responsible for hypertriglyceridemia and also interfere with the formation of HDL. Substitutions of these residues by alanine provide a recombinant apoE form with improved biological functions.  相似文献   

19.
The gene (estB) encoding for a novel esterase (EstB) from Burkholderia gladioli (formerly Pseudomonas marginata) NCPPB 1891 was cloned in Escherichia coli. Sequence analysis showed an open reading frame encoding a polypeptide of 392 amino acid residues, with a molecular mass of about 42 kDa. Comparison of the amino acid sequence with those of other homologous enzymes indicated homologies to beta-lactamases, penicillin binding proteins and DD-peptidases. The serine residue (Ser(75)) which is located within a present class A beta-lactamase motif ([F,Y]-X-[L,I,V,M,F,Y]-X-S-[T,V]-X-K-X-X-X-X-[A,G,L]-X-X-[L,C]) was identified by site-directed mutagenesis to represent the active nucleophile. A second serine residue (Ser(149)) which is located within a G-x-S-x-G motif which is typically found in esterases and lipases was demonstrated not to play a significant role in enzyme function. The estB gene was overexpressed in E. coli using a tac promoter-based expression system. Investigation of EstB protein with respect to the ability to hydrolyse beta-lactam substrates clearly demonstrated that this protein has no beta-lactamase activity. The recombinant enzyme is active on triglycerides and on nitrophenyl esters with acyl chain lengths up to C6. The preference for short chain length substrates indicated that EstB is a typical carboxylesterase. As a special feature EstB esterase was found to have high deacetylation activity on cephalosporin derivatives.  相似文献   

20.
betaB2-crystallin, the major component of beta-crystallin, is a dimer at low concentrations but can form oligomers under physiological conditions. The interaction domains have been speculated to be the beta-sheets, each of which is formed by two or more beta-strands. betaB2-crystallin consists of 16 beta-strands, 8 in the N-terminal domain and 8 in the C-terminal domain. Domain interaction sites may be removed by destroying the beta-strands, which can be done by site-specific mutations, substituting the beta-formers (Val, Phe, Leu) with Glu or Asn, strong beta-breakers. We have cloned the following beta-strand-deleted mutants, I20E, L34E, V54E, V60E, V73E, L97E, I109E, I124E, V144E, V152E, L162E, L165E, and V187E and their corresponding X --> Asn mutants. We also made two mutants, V46E and V129E, that were not on the beta-strand as controls. Disruption of protein-protein interactions was screened by a mammalian two-hybrid system assay. Protein-protein interactions decreased for all beta-strand-deleted mutants except I20E, L34E, and L162E mutants; this effect was not seen in the two mutant controls, V46E and V129E. The sequences around Val-54, Val-60, Val-73, and Leu-97 in the N-terminal region and Ile-109, Ile-124, Val-144, Val-152, Leu-165, and Val-187 in the C-terminal region that formed beta-strands appear to be important in dimerization. Some selected mutant proteins that showed strong (V46E and V129E) and reduced (V60E, V144E, V60N, and V144N) interactions were expressed in bacterial culture and were studied with spectroscopy and chromatography. The V60E and V144E mutants were found to be partially unfolded and incapable of forming a complete dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号