首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The bacterial community structure of a chromium water bath, a chromium drainage waste system, a chromium pretreatment tank, and a trivalent chromium precipitation tank from the Hellenic Aerospace Industry S.A. was assessed using 16S rRNA libraries and a high-density DNA microarray (PhyloChip). 16S rRNA libraries revealed a bacterial diversity consisting of 14 distinct operational taxonomic units belonging to five bacterial phyla: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and Bacteroidetes. However, employing a novel microarray-based approach (PhyloChip), a high bacterial diversity consisting of 30 different phyla was revealed, with representatives of 181 different families. This made it possible to identify a core set of genera present in all wastewater treatment stages examined, consisting of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, and Bacteroidetes. In the chromium pretreatment tank, where the concentration of Cr(VI) is high (2.3 mg/l), we identified the presence of Pseudomonadales, Actinomycetales, and Enterobacteriales in abundance. In the chromium precipitation tank, where the concentration of Cr(III) is high, the dominant bacteria consortia were replaced by members of Rhodocyclales and Chloroflexi. The bacterial community structure changed significantly with changes in the chromium concentration. This in-depth analysis should prove useful for the design and development of improved bioremediation strategies.  相似文献   

2.
The biliary excretion and distribution of 51Cr after intravenous administration of 51Cr(III) (61CrCl5) or 51Cr(VI) (Na252CrO4 . 4 H2O) was studied in rats. The cumulative biliary excretion of 51Cr reached 24 hrs after the injection was significantly higher after administration of 51Cr(VI) than after 51Cr(III) 3.51+/-0.7% and 0.51+/-0.05% of administered dose, respectively). This difference was especially due to a higher rate of biliary excretion of 51Cr in the first hours after 51Cr(VI) administration. The excretion of 51Cr via faeces was also higher after administration of 51Cr(VI) (7.35+/-0.45%) OF ADMINISTERED DOSE, AS AGAINST 4.23+/-0.23% after 51Cr(III). On the other hand, no significant difference in urinary excretion of 51Cr was found. Statistically significant differences were also observed in the distribution of 51Cr in the organism after administration of both valence states of the metal.  相似文献   

3.
The aim of this work was to compare Cr(III) and Cr(VI) removal kinetics from water by Pistia stratiotes and Salvinia herzogii. The accumulation in plant tissues and the effects of both Cr forms on plant growth were also evaluated. Plants were exposed to 2 and 6 mg L?1 of Cr(III) or Cr(VI) during 30 days. At the end of the experiment, Cr(VI) removal percentages were significantly lower than those obtained for Cr(III) for both macrophytes. Cr(III) removal kinetics involved a fast and a slow component. The fast component was primarily responsible for Cr(III) removal while Cr(VI) removal kinetics involved only a slow process. Cr accumulated principally in the roots. In the Cr(VI) treatments a higher translocation from roots to aerial parts than in Cr(III) treatments was observed. Both macrophytes demonstrated a high ability to remove Cr(III) but not Cr(VI). Cr(III) inhibited the growth at the highest studied concentration of both macrophytes while Cr(VI) caused senescence. These results have important implications in the use of constructed wetlands for secondary industrial wastewater treatment. Common primary treatments of effluents containing Cr(VI) consists in its reduction to Cr(III). Cr(III) concentrations in these effluents are normally below the highest studied concentrations in this work.  相似文献   

4.
In this work, two low cost sorbents, grape stalks and yohimbe bark wastes were used to remove Cr(VI) and Cr(III) from aqueous solutions. Batch experiments were designed to obtain Cr(VI) and Cr(III) sorption data. The mechanism of Cr(III) and Cr(VI) removal and Cr(VI) reduction to Cr(III) by the two vegetable wastes, has been investigated. Fourier transform infrared rays (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis on solid phase were performed to determine the main functional groups that might be involved in metal uptake and to confirm the presence of Cr(III) on the sorbent, respectively. Results put into evidence that both sorbents are able to reduce Cr(VI) to its trivalent form.  相似文献   

5.
Cr(III) and Cr(VI) have different binding capacity with sparfloxacin, and have different combination modes with calf thymus DNA. Selecting these two different metal ions, the influence of them on the binding constants between sparfloxacin (SPFX) and calf thymus DNA, as well as the related mechanism has been studied by using absorption and fluorescence spectroscopy. The result shows that Cr(III) has weaker binding capacity to SPFX in the SPFX-Cr(III) binary system, but influences the binding between SPFX and DNA obviously in SPFX-DNA-Cr(III) ternary system. However, although Cr(VI) has a stronger binding capacity to SPFX, it has no effect on the binding between SPFX and DNA. Referring to the different modes of Cr(III) and Cr(VI) binding to DNA, the mechanism of the influence of metal ions on the binding between SPFX and DNA has been proposed. SPFX can directly bind to DNA by chelating DNA base sites. If a metal ion at certain concentration binds mainly to DNA bases, it can decrease the binding constants between SPFX and DNA through competing with SPFX. While if a metal ion at certain concentration mainly binds to phosphate groups of DNA, it can increase the binding constants by building a bridge between SPFX and DNA. If a metal ion at certain concentrations binds neither to bases nor phosphate groups in DNA, it will have no effect on the binding constant between SPFX and DNA. Our result supports Palumbo's conclusion that the binding between SPFX and the phosphata groups is the precondition for the combination between SPFX and DNA, which is stabilized through stacking interactions between the condensed rings of SPFX and DNA bases.  相似文献   

6.
The present study is aimed at identifying molecular changes elicited by Cr(III) and Cr(VI) on germinating kiwifruit pollen. To address this question, comparative proteomic and DNA laddering analyses were performed. While no genotoxic effect was detected, a number of proteins whose accumulation levels were altered by treatments were identified. In particular, the upregulation of some proteins involved in the scavenging response, cell redox homeostasis and lipid synthesis could be interpreted as an oxidative stress response induced by Cr treatment. The strong reduction of two proteins involved in mitochondrial oxidative phosphorylation and a decline in ATP levels were also observed. The decrease of pollen energy availability could be one of the causes of the severe inhibition of the pollen germination observed upon exposure to both Cr(III) and Cr(VI). Finally, proteomic and biochemical data indicate proteasome impairment: the consequential accumulation of misfolded/damaged proteins could be an important molecular mechanism of Cr(III) toxicity in pollen.  相似文献   

7.
在最佳反应条件下,采用不同反应摩尔比,制备了甘草酸铬,得出的三种配合物进行红外光谱分析,然后对甘草酸铬进行了元素分析、原子吸收光谱分析和X-衍射光谱分析。结果表明,甘草酸的三个羧基均参加了配位,反应摩尔比例对反应结果没有显著影响。根据元素分析及原子吸收光谱分析数据,推断出甘草酸铬的分子式为[C42H59O16Cr(OH2)3].3H2O。分析其衍射图谱可知,该配合物是无定型非晶态颗粒。  相似文献   

8.
Chromium exists in many oxidation states, of which only the hexavalent Cr(VI) and the trivalent Cr(III) ions are stable under environmental conditions. It is generally reported that Cr(VI) is highly toxic while Cr(III) is relatively innocuous, although others have reported just the opposite. On the other hand, despite the many studies on chromium toxicity, and particularly after the knowledge that Cr(VI) anions readily enter the erythrocytes where they are reduced to Cr(III), there are practically no reports on the structural effects induced by chromium compounds on the erythrocyte membrane. With the aim to better understand the molecular mechanisms of the interaction of Cr(III) and Cr(VI) with cell membranes, CrCl(3), and K(2)CrO(4) were incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylcholine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of Cr(III) and Cr(VI) to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed with scanning electron microscopy (SEM). In all these systems, it was found that Cr(III) induced considerably higher structural perturbations than Cr(VI).  相似文献   

9.
An NAD(P)H-dependent Cr(VI) reductase (molecular weight = 65,000) was purified from a Cr(VI)-resistant bacterium, Pseudomonas ambigua G-1. Stoichiometric analysis of the enzymatic reaction showed that the enzyme catalyzed the reduction of 1 mol of Cr(VI) to Cr(III) while consuming 3 mol of NADH as an electron donor. Chromium(VI) was reduced to Cr(V) by one equivalent NADH molecule in the absence of the enzyme. Electron spin resonance analysis showed that Cr(V) species (g = 1.979) was formed during the enzymatic reduction. The amount of Cr(V) species formed was about 10 times larger than that of the nonezymatic reduction. These findings show that the Cr(VI) reductase reduced Cr(VI) to Cr(III) with at least two reaction steps via Cr(V) as an intermediate.  相似文献   

10.
The generation of layer-by-layer silicate-chitosan composite biosorbent was studied. The films were evaluated on its stability regarding the polymer leakage and its capability in the removal of Cd(II), Cr(III) and Cr(VI) from an aqueous solution. SEM, EDAX and ATR-IR techniques were applied for material characterization. Silicate-chitosan films with a final layer of silicate demonstrated chitosan retention and had better sorption capacities than those without it. For metal species, such as Cd(II) and Cr(III), the greatest adsorption was obtained when the pH of the solution was 7. When Cr(VI) was evaluated, pH 4 was the optimal for its adsorption. Langmuir and Freundlich isotherms were modeled for the equilibrium data. An 80% of the adsorbed metal was recovered by HNO(3) incubation. This non-covalent immobilization method allowed chitosan surface retention and did not affect its adsorption properties. The use of a coated surface would facilitate sorbent removal from medium after adsorption.  相似文献   

11.
A comparative study has been made on the sensitivity of the yeast Pichia guilliermondii to Cr (III) and Cr (VI) as well as on the Cr uptake potential at growth-inhibitory concentrations of chromium. The strains used in the study were either isolated from natural sources or obtained from a laboratory strain collection. The results show that most of the natural strains were more tolerant to chromium and were able to grow in the presence of 5 mM Cr (III) or 0.5 mM Cr (VI), that is at concentrations which substantially inhibited the growth of laboratory strains. The cellular Cr content after treatment was similar for both strain types and ranged from 1.2-4.0 mg/g d.w. and 0.4-0.9 mg/g d.w., for Cr (III) and Cr (VI) forms, respectively, however, in one case of a natural strain it reached the value of 10 mg Cr (III)/g dry mass. Natural-source strains were grouped into four groups based on the yeasts' differential response to Cr (III) and Cr (VI). Hexavalent Cr-resistant mutants of a P. giuilliermondii laboratory strain, which revealed markedly changed capabilities of chromium accumulation, were obtained by means of UV-induced mutagenesis. Cr (VI) treatment triggered oversynthesis of riboflavin and the addition of exogenous riboflavin increased P. guilliermondii resistance to both Cr (III) and Cr (VI). Electrophoretic protein profiles revealed the induction and/or suppression of several proteins in response to toxic Cr (VI) levels.  相似文献   

12.
An investigation into the feasibility of removing Cu(II) and Cr(IV) from solution with basidiomycete (Gloeophylum sepiarium, Pleurotus sp.)-colonized sawdust was undertaken. Obeche (Triplochyton scleroxylon) sawdust exposed to the basidiomycetes for 1–3 months reduced the concentration of the metals in the solution to 22.0–84.4 mg/l. The supernatant from the centrifuged mixture of a solution of 100 mg metal ions/l and aqueous extract of a 3-month basidiomycete-degraded obeche sawdust contained lower concentration of the metal ions (38.6–75.4 mg/l). Unextracted sawdust of pigmented tropical timbers, African mahogany (Khaya ivorensis), black afara (Terminalia ivorensis) and camwood (Baphia nitida) exposed to the test basidiomycetes, removed Cu and Cr significantly better than the extracted sawdust. It is hypothesised that some products of basidiomycete wood-degradative activities were ligands which immobilized the test metals.  相似文献   

13.
Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35 degrees C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1-9%). Michaelis-Menten hyperbolic equation and the Lineweaver-Burk double reciprocal plot were comparatively employed to determine the k (m) and V (max) of Cr(VI) bioreduction. A k (m) of 82.5 microg mL(-1) and V (max) of 7.78 microg mL(-1) h(-1) were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k (m) and V (max) of 80.9 microg mL(-1) and 10.6 microg mL(-1) h(-1), respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 microg L(-1) in 8 h, with an estimated t (1/2) of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 microg L(-1) h(-1). The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments.  相似文献   

14.
Submersed Callitriche cophocarpa is an outstanding Cr phytoremediator in water systems. The mineral elements in waters can penetrate the submersed plant surface. This has led us to the hypothesis that the absorbed Cr can alter the mechanical properties of leaves. These properties were measured by applying atomic force microscopy. C. cophocarpa shoots were immersed in 100 µM (5.2 mg/l) Cr solution for 7 days. Cr was applied independently at two distinct oxidation states as Cr(VI) and Cr(III), known from different physicochemical properties and toxic effects. The contents of elements which were proportional to the fluorescence signal in individual leaves were evaluated using micro-X-ray fluorescence spectroscopy. The results obtained showed that the leaf epidermis significantly changes its elastic properties upon incubation with Cr-supplemented solution. When compared to the control, a drop in the leaf’s stiffness observed for Cr(III) was ca. 42 %. In the case of Cr(VI)-treated leaves, the stiffness raised to ca. 17 %. The changes in elasticity were significantly correlated with the contents of Ca (Pearson’s coefficient r = 0.87, p < 0.017). The results led us to ascertain that it is Cr(III) but not Cr(VI) that significantly influences Ca removal from leaves thus decreasing the stiffness of the leaf’s epidermis.  相似文献   

15.
Abstract

Mn oxides have long been considered the primary environmental oxidant of Cr(III), however, since most of the reactive Mn oxides in the environment are believed to be of biological origin, microorganisms may indirectly mediate Cr(III) oxidation and accelerate the rate over that seen in purely abiotic systems. In this study, we examined the ability of the Mn(II)-oxidizing bacterium, Pseudomonas putida strain GB-1, to oxidize Cr(III). Our results show that GB-1 cannot oxidize Cr(III) directly, but that in the presence of Mn(II), Cr(III) can be rapidly and completely oxidized. Growth studies suggest that in growth medium with few organics the resulting Cr(VI) may be less toxic to P. putida GB-1 than Cr(III), which is generally considered less hazardous. In addition, Cr(III) present during the growth of P. putida GB-1 appeared to cause iron stress as determined by the production of the fluorescent siderophore pyoverdine. When stressed by Fe limitation or Cr(III) toxicity, Mn(II) oxidation by GB-1 is inhibited.  相似文献   

16.
Bacterial strain 5bvl1, isolated from a chromium-contaminated wastewater treatment plant and identified as Ochrobactrum tritici, was resistant to a broad range of antibiotics, to Cr(VI), Ni(II), Co(II), Cd(II), and Zn(II), and was able to grow in the presence of 5% NaCl and within the pH range 4-10. Characterization showed that strain 5bvl1 could be considered a halotolerant and alkalitolerant microorganism resistant to high concentrations of Cr(VI). This strain was able to grow aerobically in up to 10 mmolxL(-1) Cr(VI). Cr(VI) resistance was independent of sulphate concentration. Under aerobic conditions strain 5bvl1 was also able to reduce high Cr(VI) concentrations (up to 1.7 mmolxL(-1)). Increasing concentrations of Cr(VI) in the medium lowered the growth rate of strain 5bv11 but the reduction in growth rate could not be directly correlated with the amount of Cr(VI) reduced. Unlike the type strain, which was only able to reduce Cr(VI), strain 5bvl1 was resistant to Cr(VI) and able to reduce it. Moreover, in strain 5bvl1, the rate and extent of Cr(VI)-reduction were higher than in the other strains of the genus Ochrobactrum. Ochrobactrum strain 5bvl1 resists high Cr(VI) concentrations and has a high Cr(VI)-reducing ability, making it a valuable tool in bioremediation.  相似文献   

17.
Cr(VI)还原菌的筛选、鉴定及其还原物质分析   总被引:1,自引:1,他引:0  
【背景】铬污染土壤是我国土壤污染修复的重点治理对象,在众多修复技术中,微生物法因具有简单、经济、无二次污染等特性已成为研究热点,而微生物法中筛选出既能适应污染场地环境又能高效还原Cr(VI)的菌株尤为重要。【目的】筛选适应西北寒旱区高效还原Cr(VI)的菌株,丰富铬还原菌资源库,为铬污染土壤修复奠定基础。【方法】采用富集驯化、分离纯化法进行筛菌;通过形态学和分子生物学相结合的方法对目的菌株进行鉴定;采用傅里叶变换红外光谱法对还原机理进行研究。【结果】菌株G-13有较强的Cr(VI)还原能力,pH 9.0、温度为30°C条件下,60 h对Cr(VI)(100 mg/L)的还原率达到82.8%。经形态学和分子生物学鉴定,菌株G-13为Micrococcus luteus。反应中Cr(VI)的降低伴随着Cr(III)的增加,说明以还原反应为主,并且还原能力与细菌生长呈依赖型关系。对细胞各组分及变性研究表明,胞外酶在还原反应中占主要作用。除Pd~(2+)、Cd~(2+)外,其余金属离子对酶活性无明显抑制作用。通过傅里叶变换红外光谱分析,发现G-13与Cr(VI)结合位点主要为羟基、羰基、羧基、–CH、酰胺基等。【结论】菌株G-13有较强的Cr(VI)还原能力,能为西北寒旱区铬污染土壤修复丰富菌种资源。  相似文献   

18.
Chromium(III) substituted hemoglobin has been prepared. Circular dichroism spectra in the UV region have been recorded in the presence and absence of the allosteric affector inositol hexaphosphate. The reactivity with bromthymol blue and p-mercuribenzoate has been measured. All data indicate a T state (or T state-like) structure, whereas an R structure would be expected from the chromium stereochemistry. Similarities to cobalt(III) hemoglobin suggest that the chromium derivative also exists as an internal hemichrome. Thus, despite major tertiary structure differences, “denatured” hemichromes may have a quaternary structure quite similar to deoxyhemoglobin.  相似文献   

19.
We assessed the potential of mixed microbial consortia, in the form of granular biofilms, to reduce chromate and remove it from synthetic minimal medium. In batch experiments, acetate-fed granular biofilms incubated aerobically reduced 0.2 mM Cr(VI) from a minimal medium at 0.15 mM day−1 g−1, with reduction of 0.17 mM day−1 g−1 under anaerobic conditions. There was negligible removal of Cr(VI) (i) without granular biofilms, (ii) with lyophilized granular biofilms, and (iii) with granules in the absence of an electron donor. Analyses by X-ray absorption near edge spectroscopy (XANES) of the granular biofilms revealed the conversion of soluble Cr(VI) to Cr(III). Extended X-ray absorption fine-structure (EXAFS) analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III) phosphate, indicating that Cr(III) was immobilized with phosphate on the biomass subsequent to microbial reduction. The sustained reduction of Cr(VI) by granular biofilms was confirmed in fed-batch experiments. Our study demonstrates the promise of granular-biofilm-based systems in treating Cr(VI)-containing effluents and wastewater.Chromium is a common industrial chemical used in tanning leather, plating chrome, and manufacturing steel. The two stable environmental forms are hexavalent chromium [Cr(VI)] and trivalent chromium [Cr(III)] (20). The former is highly soluble and toxic to microorganisms, plants, and animals, entailing mutagenic and carcinogenic effects (6, 22, 33), while the latter is considered to be less soluble and less toxic. Therefore, the reduction of Cr(VI) to Cr(III) constitutes a potential detoxification process that might be achieved chemically or biologically. Microbial reduction of Cr(VI) seemingly is ubiquitous; Cr(VI)-reducing bacteria have been isolated from both Cr(VI)-contaminated and -uncontaminated environments (6, 7, 23, 38, 39). Many archaeal/eubacterial genera, common to different environments, reduce a wide range of metals, including Cr(VI) (6, 16, 21). Some bacterial enzymes generate Cr(V) by mediating one-electron transfer to Cr(VI) (1, 4), while many other chromate reductases convert Cr(VI) to Cr(III) in a single step.Biological treatment of Cr(VI)-contaminated wastewater may be difficult because the metal''s toxicity potentially can kill the bacteria. Accordingly, to protect the cells, cell immobilization techniques were employed (31). Cells in a biofilm exhibit enhanced resistance and tolerance to toxic metals compared with free-living ones (15). Therefore, biofilm-based reduction of Cr(VI) and its subsequent immobilization might be a satisfactory method of bioremediation because (i) the biofilm-bound cells can tolerate higher concentrations of Cr(VI) than planktonic cells, and (ii) they allow easy separation of the treated liquid from the biomass. Ferris et al. (11) described microbial biofilms as natural metal-immobilizing matrices in aqueous environments. Bioflocs, the active biomass of activated sludge-process systems are transformed into dense granular biofilms in sequencing batch reactors (SBRs). As granular biofilms settle extremely well, the treated effluent is separated quickly from the granular biomass by sedimentation (9, 24). Previous work demonstrated that aerobic granular biofilms possess tremendous ability for biosorption, removing zinc, copper, nickel, cadmium, and uranium (19, 26, 31, 32, 40). However, no study has investigated the role of cellular metabolism of aerobically grown granular biofilms in metal removal experiments. Despite vast knowledge about biotransformation by pure cultures, very little is known about reduction and immobilization by mixed bacterial consortia (8, 12, 13, 16, 20, 31, 36). Our research explored, for the first time, the metabolically driven removal of Cr(VI) by microbial granules.The main aim of this study was to investigate Cr(VI) reduction and immobilization by mixed bacterial consortia, viz., aerobically grown granular biofilms. Such biofilm-based systems are promising for developing compact bioreactors for the rapid biodegradation of environmental contaminants (17, 24, 29). Accordingly, we investigated the microbial reduction of Cr(VI) by aerobically grown biofilms in batch and fed-batch experiments and analyzed the oxidation state and association of the chromium immobilized on the biofilms by X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS).  相似文献   

20.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号