首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

2.
Organisms produce stress proteins as a response to natural and anthropogenic environmental changes. Induction of stress proteins has been reported in a variety of aquatic organisms, including rotifers, exposed to pollutants. Past studies on stress protein responses of rotifers have focused on exposure to single toxicants. In this study the rotifer Plationus patulus was exposed singly and in combination to various concentrations of As, Cr, Cu, Ni, Pb, and Zn. Following exposure, total protein was quantified (Bradford method) and stress protein 60 (HSP60) was identified using Western blotting. P. patulus induced HSP60 as a response to single exposures to Cr, Cu, Ni, Pb and Zn. HSP60 expression was increased (2 fold) in rotifers exposed to these single elements at both low and high concentrations as compared to unexposed rotifers. Arsenic exposure resulted in a 2 fold decrease in HSP induction. In rotifers exposed to metal mixtures, HSP60 was induced by the presence of As–Zn, As–Cr–Cu–Pb, As–Cr–Cu, As–Cr–Cu–Ni and As–Cr–Cu–Ni–Pb combinations in the media. HSP60 response to As and heavy metals toxicity depends on the type and number of elements present in the media as well as their concentrations and length of the exposure time.  相似文献   

3.
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.  相似文献   

4.
The effects of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb) and zinc (Zn) on the biotransformation of organic acids (acetate, propionate and butyrate) and H2 were assessed in serum-bottle microcosms. Experiments were performed over a range of metal concentrations (20–200 mg/1) using biomass from an anaerobic bioreactor fed continuously with ethanol distillery waste as inoculum. In general, the added metals inhibited the biotransformation of organic acids with increasing metal concentration. However, the extent of inhibition varied for the different biotransformations and for the different metals tested. For example, the concentration of CuCl2 effecting a 50% reduction in the rate constant for biotransformation of acetate, propionate and butyrate was 60, 75 and 30 mg/1, respectively. Cu and Cr (VI) were the most inhibitory metals in organic acid transformation, whereas Pb was the least toxic. The rate of biotransformation of acetate was reduced by half at Cu and Cr concentrations of 60 and 40 gm/1 respectively, whereas Cd, Pb, and Zn concentrations of 160 to 200 mg/l had little effect. The activities of hydrogenotrophic methanogens were much less affected by the same metals and metal concentrations.  相似文献   

5.
The phenolic extract of Acalypha leaves inhibited growth of Gloeophyllum sepiarium and Pleurotus sp. (test wood-rot fungi) in potato dextrose agar, starch agar, starch glucose agar, carboxyl methyl cellulose agar and carboxyl methyl cellulose glucose agar. Fungicidal or fungistatic concentration of the extract (10–14 mg/ml) depended on the medium. However a lower concentration of the extract (8–10 mg/ml) in combination with Trichoderma viride culture filtrate caused a similar inhibitory pattern. Degradation of obeche (Triplochiton scleroxylon), mahogany (Khaya ivorensis) and walnut (Lovoa trichilioides) by the test fungi was limited or prevented by extract treatment of 8–10 mg/g wood. A similar inhibitory effect again occurred when a combination of T. viride filtrate and lower extract concentration (6–8 mg extract per gram of wood) was used. On-going wood decay was limited or halted by a combined treatment involving 8–12 mg extract per gram of wood depending on the fungal residence period. Treated stakes exposed to 6 months of tropical wet season retained resistance to fungal attack including soft rot. The phenolic extract of A. hispida may prove useful in an integrated chemical and biological approach to wood treatment.  相似文献   

6.
In the Meuse River (Liège area, Belgium), large amounts of three species of Bryozoans, Fredericella sultana (BLUM.), Plumatella emarginata ALL. and Plumatella fungosa (PALL.) occur. They cover 3 to 40% of the bank walls and their biomass ranges from 12 to 293 g m–2 (dry weight). In the heated waters of a nuclear power plant (Tihange) and of industries lined up along the river, colony development occurs 3 to 4 weeks earlier than at an upstream station. The heavy metal content of living colonies ranges from 4 to 21 mg kg–1 Cd, 45 to 182 mg kg–1 Cu, 803 to 2232 mg kg–1 Zn, 150 to 483 mg kg–1 Pb and 21 to 138 mg kg–1 Cr (DW). The mean concentration of PCBs was 925 µg kg–1 (DW). Heavy metal and PCB concentrations in the sediments were close to those of colonies, suggesting that most of the pollutants found in the Bryozoans is in fact in the sediment trapped by the colonies.  相似文献   

7.
Removal of Cr(VI) from ground water by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Chromium can be removed from ground water by the unicellular yeast, Saccharomyces cerevisiae. Local ground water maintains chromium as CrO4 2- because of bicarbonate buffering and pH and E h conditions (8.2 and +343 mV, respectively). In laboratory studies, we used commercially available, nonpathogenic S. cerevisiae to remove hexavalent chromium [Cr(VI)] from ground water. The influence of parameters such as temperature, pH, and glucose concentration on Cr(VI) removal by yeast were also examined. S. cerevisiae removed Cr(VI) under aerobic and anaerobic conditions, with a slightly greater rate occurring under anaerobic conditions. Our kinetic studies reveal a reaction rate (Vmax) of 0.227 mg h-1 (g dry wt biomass)-1 and a Michaelis constant (Km) of 145 mg/l in natural ground water using mature S. cerevisiae cultures. We found a rapid (within 2 minutes) initial removal of Cr(VI) with freshly hydrated cells [55–67 mg h-1 (g dry wt biomass)-1] followed by a much slower uptake [0.6–1.1 mg h-1 (g dry wt biomass)-1] that diminished with time. A materials-balance for a batch reactor over 24 hours resulted in an overall shift in redox potential from +321 to +90 mV, an increase in the bicarbonate concentration (150–3400 mg/l) and a decrease in the Cr(VI) concentration in the effluent (1.9-0 mg/l).  相似文献   

8.
A field investigation (April–November) in Nigeria showed that biodegradation of obeche (Triplochiton scleroxylon) wood blocks was initially retarded in crude oil-contaminated soil but later became enhanced as indicated by loss of compression resistance. Further indication of this pattern was the detection of soft-rot cavities and basidiomycete fungi after 2–3 months exposure when compared to control blocks in uncontaminated soil. Laboratory tests with Pleurotus sp., Trametes sp., Gloeophyllum sp. (basidiomycetes) and Chaetomium sp. (soft-rot fungus) confirmed that degradation of crude oil-coated obeche blocks was markedly retarded without the presence of hydrocarbon-degrading bacteria. The filtrate of hydrocarbon-degrading Pseudomonas sp. grown in mineral salt/crude oil medium for 3–4 weeks supported growth of the test fungi better than in carboxymethyl cellulose medium but less than in potato dextrose broth. Similarly, wood blocks immersed in the filtrate became significantly more susceptible to fungal degradation. Pseudomonas sp. from stationary phase growth in crude oil medium depleted residual sugar in basidiomycete-degraded sawdust with a concomitant marked increase in its population. It may be concluded that readily metabolizable products of crude oil degradation by soil organisms and the removal of residual sugar which may have prevented catabolite repression of cellulases, culminated in increased attack on the wood by soil-borne wood-decomposing organisms.  相似文献   

9.
Aspergillus fumigatus removed uranium(VI) very rapidly and reached equilibrium within 1 h of contact of biomass with the aqueous metal solution. Biosorption data fitted to Langmuir model of isotherm and a maximum loading capacity of 423 mg U g–1 dry wt was obtained. Distribution coefficient as high as 10,000 (mg U g–1)/(mg U ml–1) at a residual metal ion concentration of 19 mg l–1 indicates its usefulness in removal of uranium(VI) from dilute waste streams. Optimum biosorption was seen at pH 5.0 and was independent of temperature (5–50°C ). Initial metal ion concentration significantly influenced uptake capacity which brought down % (w/w) uranium(VI) removal from 90 at 200 mg U l–1 to 35 at 1000 mg U l–1. Presence of 0.84 mmol Fe2+, Fe3+, Ca2+ and Zn2+ had no effect on uranium(VI) biosorption unlike Al3+ (0.84 mM) which was inhibitory.  相似文献   

10.
Two new homo- and hetero-dinuclear complexes, [Cu2L(im)](ClO4)34H2O (1) and [CuZnL(im)](ClO4)34H2O (2) (where Im=1H-1midazole and L = 3, 6, 9, 16, 19, 22-hexaaza-6, 19-bis(1H-imidazol-4-ylmethyl)tricycle[22, 2, 2, 211,14]triaconta-1, 11, 13, 24, 27, 29-hexaene) were synthesized and characterized as model compounds for the active site of copper(II)–zinc(II) superoxide dismutase (Cu2Zn2–SOD). X-ray crystal structure analysis revealed that the metal centers in both complexes exhibit distorted trigonal-bipyramid coordination geometry and the CuCu and CuZn distances are both 6.02 Å. Magnetic and ESR spectral measurements of 1 showed antiferromagnetic exchange interactions between the imidazolate-bridged Cu(II) ions. The ESR spectrum of 2 displays typical signals of mononuclear Cu(II) complex, demonstrating the formation of heterodinuclear complex 2 rather than a mixture of homodinuclear Cu(II)/Zn(II) complexes. pH-dependent ESR and UV–visible spectral measurements manifest that the imidazolate exists as a bridging ligand from pH 6 to 11 for both complexes. The IC50 values of 1.96 and 1.57 μM [per Cu(II) ion] for 1 and 2 suggest that they are good models for the Cu2Zn2–SOD.  相似文献   

11.
The acute toxicity of Cu, Cd and Cr to the marine copepod Tisbe holothuriae, Humes, was estimated by static bioassays and the LC inf50 su48h (in mg/l) was calculated. Copper proved to be the most toxic (LC inf50 su48h = 0,08 ± 0,01 mg/l) and chromium the least toxic (LC inf50 su48h = 8,14 ± 0,05 mg/l), while cadmium showed an intermediate toxicity (LC inf50 su48h = 0,97 ± 0,04 mg/l).In mixtures of the two metals an obvious synergism of the effects was observed in all cases. In all three combinations with two metals (Cu + Cd, Cu + Cr, and Cd + Cr) the mortality was higher than that expected on a purely additive basis. The mixture of the three metals presented a higher toxicity than that of the individual metals acting separately, but lower than that of all two metals mixture.  相似文献   

12.
Summary A tropical white-rot basidiomycete, BDT-14 (DSM 15396) was investigated for its chromium (VI) biosorption potential from an aqueous solution. Pre-treatment of fungal biomass with acid resulted in 100% metal adsorption compared to only 26.64% adsorption without any pre-treatment. Chromium adsorption was a rapid process at early exposure resulting in 60% chromium removal within the first 2 h of exposure. An increase in biomass showed an increase in the total metal ions adsorption but a decrease in specific uptake of metal ions. The concentrations of chromium had a pronounced effect on the rate of adsorption. The adsorption efficiency was 100% when the initial Cr (VI) concentration was 100 mg l−1 with 1,000 mg biomass. Only 47.5% adsorption was observed with 500 mg l−1 Cr (VI) concentration. The adsorption data fit well with the Langmuir and Freundlich isotherm models. Comprehensive characterization of parameters indicates BDT−14 biomass as a promising material for Cr (VI) adsorption.  相似文献   

13.
Phytoremediation is an efficient method for the removal of heavy metals from contaminated systems. A productive disposal of metal accumulating plants is a major concern in current scenario. In this work, Cr(VI) accumulating Tradescantia pallida plant parts were investigated for its reuse as a biosorbent for the removal of Cr(VI) ions. The effect of pH, contact time, sorbent dosage, Cr(VI) concentration and temperature was examined to optimize these process parameters. Results showed that Cr(VI) exposed/unexposed T. pallida leaf biomass could remove 94% of chromium with a sorption capacity of 64.672 mg g?1. Whereas the kinetics of Cr(VI) biosorption was well explained by the pseudo second-order kinetic model, the Langmuir model better described the data on Cr(VI) sorption isotherm compared with the Freundlich model. The changes in the free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were found to be ?5.276 kJ mol?1, 0.391 kJ mol?1 K?1 and 11.346 kJ mol?1, respectively, which indicated the process to be spontaneous, feasible and endothermic in nature. FTIR spectra of T. pallida leaf biomass revealed the active participation of ligands, such as ?NH, amide, hydroxyl and sulphonate groups present in the biomass for Cr(VI) binding, SEM analysis revealed a porous structure of the biosorbent for an easy uptake of Cr(VI).  相似文献   

14.
Kidd  P.S.  Díez  J.  Monterroso Martínez  C. 《Plant and Soil》2004,258(1):189-205
The effects of heavy metals on the growth, mineral composition (P, K, Fe and Mn) and metal accumulation of five populations of Cistus ladanifer subsp. ladanifer from NE Portugal were investigated in hydroponic experiments. Plants were exposed to increasing concentrations (0–2000 M) of one of eight heavy metals: Cd, Co, Cr, Cu, Mn, Ni, Pb or Zn. Populations of C. ladanifer, whose origin was ultramafic soils (S and UB) or soils developed on basic rocks (B), showed a higher tolerance to the metals Cd, Co, Cr, and Mn, and a considerable degree of tolerance to Ni. In contrast, populations originating on acid-rock soils (M and SC) showed higher tolerance to the metals Cu and Zn. Populations showed different patterns of metal accumulation and distribution in the plant parts, suggesting different mechanisms of metal tolerance are used. The more Cd-, Co- and Mn-tolerant populations (S, UB, B and SC (Cd)) showed accumulation of these three metals in the shoots (shoot:root metal concentration ratios (S:R) > 1). Shoot concentrations of up to 309 g Cd g–1, 2667 g Co g–1 and 6214 g Mn g–1 were found in these populations. The populations, UB and M, showed considerable tolerance to Ni and Zn, respectively. These populations accumulated up to 4164 g Ni g–1 and 7695 g Zn g–1 in their shoot tissues, and these metals were efficiently transported from the roots to aerial parts (S:R > 3 (Ni), S:R > 1 (Zn)). In contrast, the S and SC populations maintained higher growth rates in the presence of Ni and Zn, respectively, but showed exclusion mechanisms of metal tolerance: reduced Ni and Zn transport to shoots (S:R < 1). Cistus ladanifer was not able to efficiently transport Cr, Cu or Pb from its roots to its aerial parts (S:R ranged from 0–0.4). The more Cu-tolerant populations, M and SC, showed a greater restriction of Cu transport to the shoots than the ultramafic- or basic-rock populations. Significant changes in the plant mineral composition were found, however, concentrations were generally above mineral deficiency levels. Based on these preliminary results the possible usefulness of this plant for phytoremediation technologies is discussed. However, further investigations are necessary to evaluate its growth and metal accumulation under soil and field conditions.  相似文献   

15.
Effects of various concentrations of two heavy metals, namely Cd and Cu, on gametophytes of Laminariajaponica Aresch were determined by recording morphological changes of gametophytes, determining pH values and the heavy metal content of the culture solution, calculating the germination rate of sporophytes, and observing heavy metal (Cd) distribution using a fluorescence microscope. The results showed that heavy metals damaged the gametophytes, and were even lethal, and that the higher the concentration of heavy metal ions, the greater the injury to gametophytes. Gametophytes could not survive in culture solutions containing more than 100 mg/L Cd and 50 mg/L Cu and were only able to survive in culture solution containing a mixture of Cd and Cu up to a concentration of 10 mg/L, which indicates that gametophytes have a higher tolerance to Cd than Cu and that multiple heavy metal ions in solution markedly aggravate the damage to gametophytes compared with individual heavy metal ions. With increases in the concentration of the heavy metal, the burgeoning rate of sporophytes decreased acutely, and solutions containing multiple heavy metal ions caused even more marked harm to sporophytes than solutions containing a single heavy metal ion, because most sporophytes died in mixed solutions. The pH value of the culture medium dropped immediately at the beginning (the first day) of treatment, increased over the following days, and then decreased again. The pH of culture media containing multiple heavy metal ions showed greater variation than media containing a single heavy metal ion, with the extent of the decrease in pH of culture media containing multiple ions being greatest during the last period of the experiment. With increases in the concentration of heavy metals, the capacity of gametophytes to accumulate these ions increased. The blue fluorescent light emitted by the Cd-and Cd-binding protein complex existing in gametophytes in media containing different concentrations of Cd showed clearly the distribution of the ion in gametophytes and the results obtained were consistent with distribution determined using other methods. All results of the present study showed that gametophytes of L. japonica play a remarkable role as heavy metal decontaminators, especially with regard to Cd.  相似文献   

16.
Human biotransformation of the industrial solvent N,N-dimethylformamide gives raise to N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) which has the longest half-life (about 23 h) among urinary metabolites of N,N-dimethylformamide. It could be used for monitoring industrial exposure over several workdays, by measuring it in urine samples collected at the end of the working week. This is consistent with the suggestions of the American Conference of Governmental Industrial Hygienists, which established a limit of 40 mg/l for the year 2000. An easy, cheap and user-friendly method has been developed for determination of urinary AMCC. Unlike currently available methods, it requires neither a time-consuming preparation phase nor gas chromatographic analysis with a nitrogen-phosphorus or mass detector. The method uses high-performance liquid chromatography (HPLC), with an UV detector at 436 nm. A 10-μl volume of urine is added to a carbonate–hydrogen carbonate buffer and mixed with a dabsyl chloride solution in acetonitrile. The reaction between AMCC and the reagent is performed at 70°C for 10 min. The ‘dabsylated’ product is stable for at least 12 h. After brief centrifugation, the solution is ready for HPLC analysis using a C18 column (250×4.6 mm, 5 μm). The method is sensitive (detection limit 1.8 mg/l) and specific. It identified urinary AMCC in urine of 40 subjects not exposed to N,N-dimethylformamide with a median concentration of 3.9 mg/l. In urine samples from 20 workers exposed to N,N-dimethylformamide (5–40.8 mg/m3), AMCC concentrations ranged from 16 to 170 mg/l. Industrial toxicology laboratories with limited instrumentation will be able to use it in the biological monitoring of workers exposed to N,N-dimethylformamide.  相似文献   

17.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

18.
Phytoremediation potential of Lemna gibba was evaluated for chromium (Cr) and cadmium (Cd) under laboratory conditions for variable metal load of 1?mg/l, 3?mg/l, 5mgl, 7?mg/l and 9?mg/l, respectively, for 7 and 15?days of treatment period. Effects of both metals on structural attributes of L. gibba were also analyzed by Scanning Electron Microscopic (SEM) study. The metal removal percentage by L. gibba for Cr metal was found in the range of 37.3% to 98.6% and for cadmium it was found within the range of 81.6% to 94.6%. Bio concentration factor (BCF) of L .gibba was observed within the range of 37 to 295 for Cr metal and for Cd metal it ranged from 237 to 1144, which shows that the plant is a hyper accumulator for Cd metal and moderate accumulator for Cr metal. Statistical analysis (Two-way ANOVA) was performed on experimental results to confirm the individual effect of metal concentration and treatment period as well as cumulative effect of both factors together on percentage metal removal and on BCF. Research studies indicated that with the progress of treatment period metal removal percentage increases but increasing metal load during experiment negatively co-relates the metal removal percentage and BCF.  相似文献   

19.
Gum kondagogu (Cochlospermum gossypium), an exudates tree gum from India was explored for its potential to decontaminate toxic metals (Pb2+ and Cd2+). Optimum biosorption of metals were determined by investigating the contact time, pH, initial concentration of metal ions and biosorbent dose at 25 ± 2 °C. The maximum metal biosorption capacity for gum kondagogu was observed for Pb2+ (48.52 mg g−1) and Cd2+ (47.48 mg g−1) as calculated by Langmuir isotherm model. Kinetic studies showed that the biosorption rates could be described by pseudo-second-order expression. The metal interactions with biopolymer were assessed by FT-IR, SEM–EDXA and XPS analysis. Results based on these techniques suggest that mechanism of metal binding by the biopolymer involves micro-precipitation, ion-exchange and metal complexation.  相似文献   

20.
Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg2+), lead (Pb2+) and cadmium (Cd2+) in aqueous solutions as a single metal species at conc. 5–100 mg / L under controled laboratory conditions. The obtained results showed that Hg2+ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb2+ and Cd2+ (5–20 mg / L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40–100 mg / L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg / L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg / L. The bioremoval of heavy metal ions (Hg2+, Pb2+ and Cd2+) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg2+), 86% (Cd2+) and 70% (Pb2+). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号