首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma concentrations of cholesterol precursor sterols and plant sterols vary over a 5- to 10-fold range among normolipidemic individuals, and provide indices of the relative rates of cholesterol synthesis and fractional absorption. In the present study, we examined the relative contributions of genetic and environmental factors to variation in the plasma concentrations and sterol-cholesterol ratios of five noncholesterol sterols, including the 5alpha-saturated derivative of cholesterol (cholestanol), two precursors in the cholesterol biosynthesis pathway (desmosterol and lathosterol), and two phytosterols (campesterol and sitosterol). Plasma sterol concentrations were highly stable in 30 individuals measured over a 48 week period. Regression of offspring sterol levels on the parental values indicated that plasma levels of all five noncholesterol sterols were highly heritable. Analysis of monozygotic and dizygotic twin pairs also indicated strong heritability of all five sterols. Two common sequence variations (D19H and T400K) in ABCG8, an ABC half-transporter defective in sitosterolemia, were associated with lower concentrations of plant sterols in parents, and in their offspring.Taken together, these findings indicate that variation in the plasma concentrations of noncholesterol sterols is highly heritable, and that polymorphism in ABCG8 contributes to genetic variation in the plasma concentrations of plant sterols.  相似文献   

2.
The molecular basis of the processes that control two closely related traits, the absorption of cholesterol from the intestines and plasma plant sterol levels, are only partially understood. The discovery that mutations in two novel hemitransporters, ATP binding cassette transporter G5 (ABCG5) and ABCG8, underlie a rare inborn error in plant sterol metabolism, beta-sitosterolemia, represents a major breakthrough in this field. More recently, genetic studies in the mouse that mapped loci in linkage with cholesterol absorption and plasma plant sterol levels and studies in humans that examined the relationship of plasma plant sterol levels to sequence variation in the ABCG5/ABCG8 locus suggested the involvement of other genes. Moreover, studies in beta-sitosterolemic patients, in ABCG5/ABCG8-targeted animals, and on a newly developed cholesterol absorption inhibitor, ezetimibe, suggest commonalities and differences in the regulation of the two traits. This review summarizes the evidence for genetic control of cholesterol absorption and plasma plant sterol levels, presents the evidence for commonalities and differences between the two traits, and discusses recent developments and future perspectives in this field.  相似文献   

3.
人们对控制胆固醇吸收和血浆植物甾醇水平的分子基础了解尚少.ABCG5和ABCG8的发现使得理解甾醇吸收的分子基础获得突破.ABCG5和ABCG8主要涉及植物甾醇代谢,而其他基因涉及胆固醇吸收.最近,一种新胆固醇吸收阻止剂(ezetimibe)的问世,给胆固醇吸收和血浆植物甾醇水平基因控制研究提供新的亮点.主要综述胆固醇吸收和血浆植物甾醇水平的基因控制,关注调节它们的共同点和不同点,讨论这一领域的最近发展和展望未来希望.  相似文献   

4.
Genetic variation at the ABCG5/G8 locus has been associated with markers of cholesterol homeostasis. As data originate from small-scale studies, we performed a meta-analysis to study these associations in a large dataset. We first investigated associations between five common ABCG5/G8 polymorphisms (p.Q604E, p.D19H, p.Y54C, p.T400K, and p.A632V) and plasma sterol levels in 245 hypercholesterolaemic individuals. No significant associations were found. Subsequently, our data were pooled into a meta-analysis that comprised 3,364 subjects from 16 studies (weighted mean age, 46.7 ± 10.5 years; BMI, 23.9 ± 3.5 kg/m2). Presence of the minor 632V allele correlated with reduced LDL-C concentrations (n = 367) compared with homozygosity for the 632A variant [n = 614; −0.11 mmol/l (95% CI, range: −0.20 to −0.02 mmol/l); P = 0.01]. The remaining polymorphisms were not associated with plasma lipid levels. Carriers of the 19H allele exhibited lower campesterol/TC (n = 83; P < 0.001), sitosterol/TC (P < 0.00001), and cholestanol/TC (P < 0.00001), and increased lathosterol/TC ratios (P = 0.001) compared with homozygous 19D allele carriers (n = 591). The ABCG8 632V variant was associated with a clinically irrelevant LDL-C reduction, whereas the 19H allele correlated with decreased cholesterol absorption and increased synthesis without affecting the lipid profile. Hence, associations between frequently studied missense ABCG5/G8 polymorphisms and markers of cholesterol homeostasis are modest at best.  相似文献   

5.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

6.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

7.
In this study we analyzed functions of ATP-binding cassette (ABC) transporters involved in sterol transport from Caco-2 cells. Treatment with a synthetic liver x receptor ligand elevated both mRNA and protein levels of ABCG5, G8, and ABCA1. The ligand stimulated cholesterol efflux, suggesting that ABC transporters are involved in it. To identify the acceptors of cholesterol, potential molecules such as apolipoprotein A-I, glycocholic acid, phosphatidylcholine, and bile acid micelles were added to the medium. Apo A-I, a known acceptor of cholesterol transported by ABCA1, elevated cholesterol efflux on the basal side, whereas the others raised cholesterol efflux on the apical side. Moreover, bile acid micelles preferentially augmented plant sterol efflux rather than cholesterol. Finally, in HEK293 cells stably expressing ABCG5/G8, bile acid micelle-mediated sterol efflux was significantly accelerated. These results indicate that ABCG5/G8, unlike ABCA1, together with bile acids should participate in sterol efflux on the apical surface of Caco-2 cells.  相似文献   

8.
Plasma plant sterol concentrations (an index of cholesterol absorption efficiency) and plasma lathosterol concentration (an index of cholesterol synthesis rate) were measured in 52 patients with non-insulin dependent diabetes mellitus (NIDDM) and 36 non-diabetic controls. Plasma plant sterol concentrations were significantly (P less than 0.01) lower in diabetic patients (campesterol: men -36%, women -48%; betasitosterol: men -35%, women -42%). Fasting serum insulin levels were inversely correlated with plasma plant sterol concentrations in diabetic patients (campesterol: r = -0.347, P = 0.012; betasitosterol: r = -0.345, P = 0.012) and in non-diabetic men (campesterol: r = -0.578, P = 0.039; betasitosterol: r = -0.702, P = 0.008). Serum insulin levels were also correlated significantly with plasma lathosterol concentration in diabetic patients (r = 0.295, P = 0.034). The results of this study suggest that absorption of plant sterols and possibly cholesterol from the diet may be reduced in hyperinsulinemic diabetics.  相似文献   

9.
Plasma noncholesterol sterols in male distance runners and sedentary men   总被引:1,自引:0,他引:1  
Plasma lathosterol concentration is taken to be an index of the rate of cholesterol synthesis and plasma concentrations of plant sterols just as campesterol and betasitosterol are taken to be indeces of cholesterol absorption efficiency. These noncholesterol sterols were measured in plasma from 14 male distance runners and 10 sedentary men. Plasma lathosterol concentration was 30% lower (P less than 0.02) and plasma betasitosterol concentration was 33% higher (P less than 0.02) in the runners compared to the sedentary men. Plasma concentrations of lathosterol and plant sterols were inversely and significantly (P less than 0.05) correlated in both the runners and the sedentary men. Plasma plant sterol concentrations were correlated positively and significantly (P less than 0.01) with plasma high density lipoprotein cholesterol (HDL-C) concentrations in the runners and sedentary men combined. These findings suggest that more efficient cholesterol absorption may lead to higher plasma plant sterol concentrations and may contribute to lower cholesterol synthesis rates, reduced concentrations of plasma lathosterol and higher plasma HDL-C concentration in distance runners.  相似文献   

10.
The mechanisms responsible for interindividual variation in response to statin therapy remain uncertain. It has been shown that hepatic cholesterol synthesis is associated with ATP binding cassette transporter G5 and G8 (ABCG5/8) activities. To test the hypothesis that genetic variation in ABCG5/8 might influence the plasma lipid response to statin therapy, we examined five nonsynonymous polymorphisms at the ABCG5/8 loci (Q604E, D19H, Y54C, T400K, and A632V) in 338 hypercholesterolemic patients treated with 10 mg atorvastatin. In carriers of the D19H variant, means of posttreatment values and adjusted percent reductions in LDL cholesterol (LDLC) were significantly lower (P = 0.028) and greater (P = 0.036) (112 mg/dl, 39.7%) than those of noncarriers (119 mg/dl, 36.2%), respectively, while no significant difference was observed in percent reductions in total cholesterol. Stepwise multiple regression analysis revealed significant and independent associations with absolute or percent reduction between D19H genotype and posttreatment LDL cholesterol levels. The other polymorphisms were not significantly associated with treatment effects. These results suggest that, in patients with hypercholesterolemia, the ABCG8 D19H variant is associated with greater LDLC-lowering response to atorvastatin therapy.  相似文献   

11.
The roles of polymorphisms of the sitosterolemia genes ABCG5 and ABCG8 in the regulation of cholesterol metabolism and insulin sensitivity were studied in mildly hypercholesterolemic noncoronary subjects (n = 263, 144 men and 119 women) divided into tertiles by baseline serum cholestanol-to-cholesterol ratio (< or = 118.3 and > or = 147.7 10(2) x mmol/mol cholesterol), a surrogate marker of cholesterol absorption efficiency. The lowest cholestanol tertile was associated with high body mass index (BMI), plasma glucose, serum insulin and triglycerides, and cholesterol synthesis markers (cholestenol, desmosterol, lathosterol) and low HDL cholesterol and cholesterol absorption markers (campesterol, sitosterol) (P < 0.01 for all). The 19H allele of the ABCG8 gene accumulated in the lowest cholestanol tertile (P < 0.001) and was associated with low total and LDL cholesterol and absorption markers and with high synthesis markers (P < 0.05 for all). The 604E allele of the ABCG5 gene in men was associated with high BMI, plasma insulin, low serum sitosterol, and high serum cholestenol levels (P < 0.05 for all). In a subgroup of 71 men, the 604E allele was associated with insulin resistance measured with the hyperinsulinemic euglycemic clamp. In conclusion, low cholesterol absorption efficiency was associated with characteristics of the metabolic syndrome. Low serum cholesterol and cholesterol absorption were linked to the D19H polymorphism of the ABCG8 gene, and characteristics of the insulin resistance syndrome in men were linked with the Q604E polymorphism of the ABCG5 gene.  相似文献   

12.
Polymorphisms in the ATP binding cassette (ABC) transporters ABCG5 and ABCG8 are related to plasma plant sterol concentrations. It is not known whether these polymorphisms are also associated with variations in serum plant sterol concentrations during interventions affecting plant sterol metabolism. We therefore decided to study changes in serum plant sterol concentrations with ABCG5/G8 polymorphisms after consumption of plant stanol esters, which decrease plasma plant sterol concentrations. Cholesterol-standardized serum campesterol and sitosterol concentrations were significantly associated with the ABCG8 T400K genotype, as were changes in serum plant sterol concentrations after consumption of plant stanols. The reduction of -57.1 +/- 38.3 10(2) x micromol/mmol cholesterol for sitosterol in TT subjects was significantly greater compared with the -36.0 +/- 18.7 reduction in subjects with the TK genotype (P = 0.021) and the -16.9 +/- 13.0 reduction in subjects with the KK genotype (P = 0.047). Changes in serum campesterol concentrations showed a comparable association. No association with serum LDL cholesterol was found. Genetic variation in ABCG8 not only explains cross-sectional differences in serum plant sterol concentrations but also determines a subject's responsiveness to changes in serum plant sterols during interventions known to affect plant sterol metabolism.  相似文献   

13.
Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8   总被引:3,自引:0,他引:3  
The ATP binding cassette transporters ABCG5 (G5) and ABCG8 (G8) limit the accumulation of neutral sterols by restricting sterol uptake from the intestine and promoting sterol excretion into bile. Humans and mice lacking G5 and G8 (G5G8-/-) accumulate plant sterols in the blood and tissues. However, despite impaired biliary cholesterol secretion, plasma and liver cholesterol levels are lower in G5G8-/- mice than in wild-type littermates. To determine whether the observed changes in hepatic sterol metabolism were a direct result of decreased biliary sterol secretion or a metabolic consequence of the accumulation of dietary noncholesterol sterols, we treated G5G8-/- mice with ezetimibe, a drug that reduces the absorption of both plant- and animal-derived sterols. Ezetimibe feeding for 1 month sharply decreased sterol absorption and plasma levels of sitosterol and campesterol but increased cholesterol in both the plasma (from 60.4 to 75.2 mg/dl) and the liver (from 1.1 to 1.87 mg/g) of the ezetimibe-treated G5G8-/- mice. Paradoxically, the increase in hepatic cholesterol was associated with an increase in mRNA levels of HMG-CoA reductase and synthase. Together, these results indicate that pharmacological blockade of sterol absorption can ameliorate the deleterious metabolic effects of plant sterols even in the absence of G5 and G8.  相似文献   

14.
Significant familial aggregation was observed for plasma levels of lathosterol (an indicator of whole-body cholesterol synthesis) and plant sterols campesterol and beta-sitosterol (indicators of cholesterol absorption) in 160 Dutch families consisting of adolescent mono- and dizygotic twin pairs and their parents. For lathosterol a moderate genetic heritability in parents and offspring (29%) was found. In addition, shared environment also contributed significantly (37%) to variation in plasma lathosterol concentrations in twin siblings. However, a model with different genetic heritabilities in the two generations (10% in parents and 68% in offspring) fitted the data almost as well. For plasma plant sterol concentrations high heritabilities were found. For campesterol heritability was 80% and for beta-sitosterol it was 73%, without evidence for differences in heritability between sexes or generations. No influence of common environmental influences shared by family members was seen for either campesterol or beta-sitosterol. Taken together, these results confirm and expand the hypothesis that individual differences in plasma levels of noncholesterol sterols are moderately (lathosterol) to highly (plant sterols) heritable.  相似文献   

15.
We previously reported that liver-specific overexpression of ABCG5/G8 in mice is not atheroprotective, suggesting that increased biliary cholesterol secretion must be coupled with decreased intestinal cholesterol absorption to increase net sterol loss from the body and reduce atherosclerosis. To evaluate this hypothesis, we fed low density lipoprotein receptor-knockout (LDLr-KO) control and ABCG5/G8-transgenic (ABCG5/G8-Tg)xLDLr-KO mice, which overexpress ABCG5/G8 only in liver, a Western diet containing ezetimibe to reduce intestinal cholesterol absorption. On this dietary regimen, liver-specific ABCG5/G8 overexpression increased hepatobiliary cholesterol concentration and secretion rates (1.5-fold and 1.9-fold, respectively), resulting in 1.6-fold increased fecal cholesterol excretion, decreased hepatic cholesterol, and increased (4.4-fold) de novo hepatic cholesterol synthesis versus LDLr-KO mice. Plasma lipids decreased (total cholesterol, 32%; cholesteryl ester, 32%; free cholesterol, 30%), mostly as a result of reduced non-high density lipoprotein-cholesterol and apolipoprotein B (apoB; 36% and 25%, respectively). ApoB-containing lipoproteins were smaller and lipid-depleted in ABCG5/G8-TgxLDLr-KO mice. Kinetic studies revealed similar 125I-apoB intermediate density lipoprotein/LDL fractional catabolic rates, but apoB production rates were decreased 37% in ABCG5/G8-TgxLDLr-KO mice. Proximal aortic atherosclerosis decreased by 52% (male) and 59% (female) in ABCG5/G8-TgxLDLr-KO versus LDLr-KO mice fed the Western/ezetimibe diet. Thus, increased biliary secretion, resulting from hepatic ABCG5/G8 overexpression, reduces atherogenic risk in LDLr-KO mice fed a Western diet containing ezetimibe. These findings identify distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism and atherosclerosis.  相似文献   

16.
Possible mechanisms for the cholesterol-lowering effects of plant stanol esters were addressed by feeding hamsters diets containing stanol esters, cholesterol, or cholestyramine/lovastatin. ABCA1, ATP binding cassette G1 (ABCG1), ABCG5, ABCG8, and Niemann-Pick C1-like 1 (NPC1L1) mRNA levels were then estimated in duodenum, jejunum, and ileum. Plasma cholesterol was decreased by 36% and 94% in animals fed stanol esters and cholestyramine/lovastatin, respectively. Cholesterol feeding increased plasma cholesterol by 2.5-fold. Plasma plant sterols were unchanged by stanol ester feeding but became undetectable by feeding cholestyramine/lovastatin. Cholesterol and stanols accumulated in enterocytes of animals fed cholesterol and stanol esters, respectively. ABCG5 and ABCG8 mRNA levels were decreased by stanol esters and cholestyramine/lovastatin. Cholesterol feeding markedly increased ABCA1 and ABCG1 expression and modestly increased ABCG5/ABCG8. NPC1L1 mRNA was not significantly altered by any of the diets. ABCG1, ABCG5, ABCG8, and NPC1L1 mRNAs were highest in cells of the upper villus, whereas ABCA1 mRNA was highest in cells of the lower villus. The results suggest that cholesterol lowering effect of stanol esters is unrelated to changes in mRNA levels of intestinal ABC sterol transporters or NPC1L1. Cholesterol flux regulates ABC expression but not NPC1L1. The different localization of ABCA1 suggests a different function for this protein than for ABCG1, ABCG5, ABCG8, and NPC1L1.  相似文献   

17.
The ATP-binding cassette (ABC) sterol transporters are responsible for maintaining cholesterol homeostasis in mammals by participating in reverse cholesterol transport (RCT) or transintestinal cholesterol efflux (TICE). The heterodimeric ABCG5/G8 carries out selective sterol excretion, preventing the abnormal accumulation of plant sterols in human bodies, while homodimeric ABCG1 contributes to the biogenesis and metabolism of high-density lipoproteins. A sterol-binding site on ABCG5/G8 was proposed at the interface of the transmembrane domain and the core of lipid bilayers. In this study, we have determined the crystal structure of ABCG5/G8 in a cholesterol-bound state. The structure combined with amino acid sequence analysis shows that in the proximity of the sterol-binding site, a highly conserved phenylalanine array supports functional implications for ABCG cholesterol/sterol transporters. Lastly, in silico docking analysis of cholesterol and stigmasterol (a plant sterol) suggests sterol-binding selectivity on ABCG5/G8, but not ABCG1. Together, our results provide a structural basis for cholesterol binding on ABCG5/G8 and the sterol selectivity by ABCG transporters.  相似文献   

18.
Abnormal cholesterol metabolism, including low intestinal cholesterol absorption and elevated synthesis, is prevalent in diabetes, obesity, hyperlipidemia, and the metabolic syndrome. Diet-induced weight loss improves cholesterol absorption in these populations, but it is not known if endurance exercise training also improves cholesterol homeostasis. To examine this, we measured circulating levels of campesterol, sitosterol, and lathosterol in 65 sedentary subjects (average age 59 years; with at least one metabolic syndrome risk factor) before and after 6 months of endurance exercise training. Campesterol and sitosterol are plant sterols that correlate with intestinal cholesterol absorption, while lathosterol is a marker of whole body cholesterol synthesis. Following the intervention, plant sterol levels were increased by 10% (p<0.05), but there was no change in plasma lathosterol. In addition, total and LDL-cholesterol were reduced by 0.16 mmol and 0.10 mmol, respectively (p<0.05), while HDL-C levels increased by 0.09 mmol (p<0.05). Furthermore, the change in plant sterols was positively correlated with the change in VO2max (r=0.310, p=0.004), independent of other metabolic syndrome risk factors. These data indicate that exercise training reduces plasma cholesterol despite increasing cholesterol absorption in subjects with metabolic syndrome risk factors.  相似文献   

19.
Phytosterols (beta-sitosterol, cholestanol and campesterol) and cholesterol precursors (desmosterol and lathosterol), have been suggested as important biochemical markers of intestinal cholesterol absorption and liver biosynthesis, respectively, and as useful clinical parameters in the study of hypercholesterolemia, beta-sitosterolemia, atherosclerosis and cardiovascular disease, including pharmacological response to hypolipidemic agents. We developed an optimised analytical method for the simultaneous analysis of cholestanol, desmosterol, lathosterol, campesterol and beta-sitosterol in plasma using capillary gas chromatography coupled to mass spectrometry (GC-MS) with multiple selected ion monitoring (SIM). This method is based on the alkaline hydrolysis of sterol esters, extraction of free sterols and derivatization. The recovery of all sterols was in the range 76-101%. Within-day relative standard deviations (R.S.Ds.) and the between-day R.S.Ds. of cholestanol, desmosterol, lathosterol, campesterol and beta-sitosterol were less than 8%, and their plasma levels in 161 normal subjects were (mean+/-S.D.) 4.73+/-2.57, 2.37+/-1.04, 6.23+/-3.14, 3.67+/-1.95 and 5.92+/-3.62 micromol/l, respectively.  相似文献   

20.
We measured the cholestanol, cholesterol precursor (lathosterol), and plant sterol (campesterol and sitosterol) concentrations of serum and bile in 11 patients with cerebrotendinous xanthomatosis. The mean values of serum cholestanol, lathosterol, campesterol, and sitosterol were, respectively, 8.4-, 2.5-, 2.7-, and 1.4-times higher in the patients than in normal control subjects (n = 26). Cholestanol (6.7-fold) and campesterol (3.7-fold) levels in bile (n = 4) were also elevated in the patients. There was no significant difference of serum sterol levels between patients with coronary artery disease and those without it. Chenodeoxycholic acid treatment for periods ranging from 6 months to 3 years and 4 months lowered serum lathosterol (57.7% reduction) and campesterol (57.8%) levels in parallel with cholestanol (70.8%) level, but the sitosterol level (19.7%) decreased less. Thus, increased levels of cholesterol precursor (lathosterol), plant sterols (campesterol and sitosterol), and cholestanol were found in the serum and bile in cerebrotendinous xanthomatosis. Chenodeoxycholic acid treatment effectively reduced the levels of these sterols, except for sitosterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号