首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
Nonenzymatic glycation is a posttranslational modification of peptides and proteins by sugars, which, after a cascade of reactions, leads to the formation of a complex family of irreversibly changed adducts implicated in the pathogenesis of human diseases. The stability of the Amadori compounds, the last reversible intermediates, determines the further course of the reaction. To provide information concerning the fate of glycated opioid peptides introduced into human circulation, the enzymatic (80% human serum) and chemical (phosphate buffer) stability of three Amadori compounds related to the endogenous opioid pentapeptide, leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), and to its N-terminal fragments: N-(1-deoxy-D-fructos-1-yl)-l-tyrosyl-glycyl-glycyl-L-phenylalanyl-L-leucine, N-(1-deoxy-D-fructos-1-yl)-L-tyrosyl-glycyl-glycine, and N-(1-deoxy-D-fructos-1-yl)-L-tyrosine were investigated. The results obtained in human serum indicate that N-terminal glycation of leucine-enkephalin significantly enhances proteolytic stability. While leucine-enkephalin itself was rapidly degraded (t1/2 = 14.8 min), the glycated-derivative was slowly converted (t1/2 = 14 h) to the corresponding Amadori /compound of Tyr-Gly-Gly and Phe-Leu. In phosphate buffer, the rate of hydrolysis of the Amadori compounds depends on the structure and length of the peptide moiety as well as on the concentration of the phosphate buffer. The hydrolysis patterns for the Amadori compounds in phosphate buffer and in human serum were not the same and appear to be specific for each substrate.  相似文献   

2.
N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.  相似文献   

3.
【目的】分离获得来源于酱醪的细菌,考察菌株与酱油品质相关的特性,初步评价其应用于酱油发酵的潜力。【方法】从日式酱油发酵的酱醪体系中分离和筛选优势或特征细菌菌株,比较它们的耐盐性及其在高盐条件下产蛋白酶、有机酸、挥发性物质和氨基酸等的能力。【结果】从日式酱油酱醪中共分离得到9株细菌,分别属于魏斯氏菌(Weissella)、乳酸足球菌(Pediococcus)、乳酸杆菌(Lactobacillus)、芽孢杆菌(Bacillus)、四联球菌(Tetragenococcus)和葡萄球菌(Staphylococcus)属。其中耐盐的细菌有类肠膜魏斯氏菌(Weissella paramesenteroides)CQ03、嗜酸乳酸足球菌(Pediococcus acidilactici)JY07、戊糖乳酸足球菌(Pediococcus pentosaceus)JY08、葡萄球菌(Staphylococcus sp.)JY09和嗜盐四联球菌(Tetragenococcus halophilus)MRS1。在高盐条件下,对它们的特性分析表明:解淀粉芽孢杆菌(Bacillus amyloliquefaciens)B2产蛋白酶和糖化酶的能力较强,W.paramesenteroides CQ03可水解原料产生较多鲜味氨基酸,T.halophilus MRS1产有机酸能力较强,它和S.sp.JY09代谢产生的挥发性物质较多。【结论】筛选得到9株在促进原料水解和提高风味物质合成方面有潜力的菌株,如果应用到酱油工业生产中,将有利于缩短发酵周期,提高酱油品质。  相似文献   

4.
Ion exchange resins have been used to separate soy sauce into three fractions of distinctly different composition: a cation fraction, a neutral fraction and an anion fraction. Almost all of the constituents responsible for browning were recovered in these three fractions.

Storage experiments show that when the three fractions were stored separately, only the cation fraction darkened considerably. When they were combined and stored, the color of the mixture increased at nearly the same rate as that of the original soy sauce. Neutral sugars are important constituents of the neutral fraction with respect to browning. The browning rate of a sugar-amino acid mixture (simulated soy sauce), was about 10% of soy sauce. The effect of the anion fraction (mainly caused by organic acids) and the ashed cation fraction on the over-all browning of soy sauce is calculated to be 1O~12% and 20%, respectively.

The sum of the contribution rate of the anion fraction, the neutral fraction, the amino acids and the ashed cation fraction in the browning of soy sauce was concluded to be approximately 40%. Compounds responcible for residual part of 60% should be considered to exist in the cation fraction. It was suggested that such compounds have strong reducing power and 02-uptaking ability.  相似文献   

5.
Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non‐proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein‐based food product, soy sauce. An acidic fraction was prepared with anion‐exchange solid‐phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF‐MS. α‐Glutamyl, γ‐glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ‐glutamyl dipeptides (70 mg/kg). In addition, N‐succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg).  相似文献   

6.
A soy sauce sample was fractionated by gel filtration on a Sephadex G–15 column, then the fractions were subfractionated on the basis of acidity by ion exchange chromatography on a QAE-Sephadex A–25 column. After preliminary fractionation, the components in the neutral subfractions were transformed to copper salts, and the salts were chromatographed on a DEAE-Sephadex A–25 column with a borate buffer and aqueous acetic acid to separate neutral peptide substances from a large amount of free amino acids. The peptide fractions were further fractionated on a preparative amino acid analyzer and by paper chromatography to separate the peptide substances.

Three glycodipeptides and eight dipeptides were isolated and characterized as the major neutral peptide components in soy sauce. However, it was difficult to anticipate any direct contribution of these peptides to the flavor construction in soy sauce on the basis of their taste intensities and contents.  相似文献   

7.
A soy sauce sample was fractionated by gel filtration on a Sephadex G–15 column, then the fractions were subfractionated on the basis of acidity by ion exchange chromatography on a QAE-Sephadex A–25 column. The acidic subfractions with various acidities were further fractionated, using a preparative amino acid analyzer and by paper chromatography to separate the acidic peptide components.

Four dipeptides and sugar derivatives of ten dipeptides and two tripeptides were isolated and characterized as the major acidic peptides in soy sauce. However, it was difficult to anticipate any direct contribution of these peptides to the flavor construction in soy sauce on the basis of their contents and taste intensities.  相似文献   

8.
A method for determining the extent of non-enzymic glycation (originally called "glycosylation") of both lysyl and N-terminal residues of a protein is described. The glycated protein is treated with sodium borohydride, and is then subjected to acid-catalysed hydrolysis. The resulting N-(1-deoxy-D-hexitol-1-yl)amino acids are separated by cation-exchange high-performance liquid chromatography (l.c.), and detected by a post-column reaction with periodate. The method has been applied successfully to samples of human hemoglobin and human serum albumin, for measurement of numbers of valine-attached and of lysine-attached N-(1-deoxy-D-fructos-1-yl) groups per protein molecule.  相似文献   

9.
Although the five basic taste qualities—sweet, sour, bitter, salty and umami—can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5’-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.  相似文献   

10.
Transient receptor potential vanilloid 1 (TRPV1) was identified as a receptor of capsaicin, which is a pungent ingredient in hot red peppers. Due to its relevance for nociception, a physiological and pharmacological study of TRPV1 has also been developed. Therefore, it is important to enrich scientific knowledge regarding the TRPV1 activating or inhibiting compounds. In this study, we fractionated soy sauce based on the human TRPV1 (hTRPV1) activity using column chromatography and purified 5-(9H-pyrido[3,4-b]indol-1-yl)-2-furanmethanol (perlolyrine) as an hTRPV1-activating compound. Additionally, perlolyrine activates the human transient receptor potential ankyrin 1 (hTRPA1). The EC50 of hTRPV1 and hTRPA1 were 2.87 and 1.67 μmol L?1, respectively. HPLC quantification of soy sauces showed that they contain 2.22–12.13 μmol L?1 of perlolyrine. The sensory evaluation revealed that perlolyrine has taste modification effect. The results of this study, for the first time, suggest that perlolyrine induces the activation of hTRPV1 and hTRPA1.  相似文献   

11.
Industrial production of soy sauce   总被引:3,自引:0,他引:3  
Summary Soy sauce is a seasoning agent with a salty taste and a distinct aroma suggestive of meat extracts. The sauce is made by fermentation of a combination of soy beans and wheat in water and salt. This paper covers the method for production of fermented soy sauce, and that for acid-hydrolysis of defatted soy bean proteins. The microorganisms involved in soy sauce production, and biochemical and chemical changes in soy bean and wheat during fermentation influence greatly the sensory attributes and quality of soy sauce. Recent progress in industrialization of soy sauce manufacture is discussed.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.  相似文献   

12.
In taste bud cells, glutamate may elicit two types of responses, as an umami tastant and as a neurotransmitter. Glutamate applied to apical membrane of taste cells would elicit taste responses whereas glutamate applied to basolateral membrane may act as a neurotransmitter. Using restricted stimulation to apical or basolateral membrane of taste cells, we examined responses of taste cells to glutamate stimulation, separately. Apical application of monosodium glutamate (MSG, 0.3 M) increased firing frequency in some of mouse fungiform taste cells that evoked action potentials. These cells were tested with other basic taste compounds, NaCl (salty), saccharin (sweet), HCl (sour), and quinine (bitter). MSG-sensitive taste cells could be classified into sweet-best (S-type), MSG-best (M-type), and NaCl or other electrolytes-best (N- or E/H-type) cells. Furthermore, S- and M-type could be classified into two sub-types according to the synergistic effect between MSG and inosine-5′-monophosphate (S1, M1 with synergism; S2, M2 without synergism). Basolateral application of glutamate (100 μM) had almost no effect on the mean spontaneous firing rates in taste cells. However, about 10% of taste cells tested showed transient increases in spontaneous firing rates (>mean + 2 standard deviation) after basolateral application of glutamate. These results suggest the existence of multiple types of umami-sensitive taste cells and the existence of glutamate receptor(s) on the basolateral membrane of a subset of taste cells.  相似文献   

13.
To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.  相似文献   

14.
A series of 1- and 2-naphthamides has been prepared and tested for in vitro binding to D(2L), D(4.2), and 5-HT(2A) receptors. Different compounds display selectivity for D(4.2) and 5-HT(2A) receptors versus D(2L) receptors. N-(1-Arylalkyl-piperidin-4-yl) carboxamides have higher affinities than the corresponding N-(4-arylalkylamino-piperidin-1-yl) carboxamide analogues. A benzyl moiety in position 1 of the piperidine in the 2-naphthamide series (2) appears to be the best choice for a favorable interaction with D(4.2) and 5-HT(2A) receptors. Increasing the linker length between the phenyl ring and the basic nitrogen led to a decreased affinity for these receptors. In the 1-naphthamide series, the most potent D(4.2) ligand (7) possesses a phenylpropyl moiety while its affinity for 5-HT(2A) receptors is strongly reduced. All compounds with significant affinity for D(4.2) and 5-HT(2A) receptors were antagonists.  相似文献   

15.
Trpm5 null mice respond to bitter, sweet, and umami compounds   总被引:8,自引:0,他引:8  
Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.  相似文献   

16.
李巧玉  陈坚  曾伟主  方芳 《微生物学通报》2018,45(11):2449-2462
【背景】魏斯氏菌广泛存在于发酵食品中,它们与食品发酵进程和风味物质的形成密切相关。酱油发酵过程酱醪中细菌的优势菌属是魏斯氏菌,研究魏斯氏菌的生理和代谢特性对于揭示菌株对环境的适应性和与酱油发酵相关的功能具有重要意义。【目的】从酱油酱醪中分离获得魏斯氏菌属中主要种的菌株,研究它们在酱油发酵过程的数量变化以及菌株的生理和生化特性,阐明菌株对酱油发酵体系的适应性和与酱油发酵相关的特性。【方法】通过菌株绝对数量的定量分析和耐受性比较,以及考察高盐条件下魏斯氏菌合成短链脂肪酸、胞外多糖、生物胺和氨基甲酸乙酯或其前体等特性,研究各类魏斯氏菌对酱油发酵和其安全性的影响。【结果】从高盐稀态酱油的酱醪中共分离得到16株魏斯氏菌,分别属于融合魏斯氏菌(Weissella confusa)、类肠膜魏斯氏菌(Weissellaparamesenteroides)和食窦魏斯氏菌(Weissellacibaria)。其中类肠膜魏斯氏菌可耐受高盐条件,是酱醪中魏斯氏菌属的主要菌种。它们合成短链脂肪酸的能力高于融合魏斯氏菌和食窦魏斯氏菌。酱醪来源的魏斯氏菌合成氨(胺)类危害物的特性区别较大,类肠膜魏斯氏菌的部分菌株产生物胺并可利用精氨酸积累瓜氨酸,食窦魏斯氏菌则能够降解多种生物胺。【结论】揭示了酱醪中主要魏斯氏菌的耐盐特性、在较低温度下生长情况和物质代谢规律,对于阐明魏斯氏菌与酱油发酵相关的功能和特性以及对酱油加工过程安全控制具有重要意义。  相似文献   

17.
Umami taste is imparted predominantly by monosodium glutamate (MSG) and 5′-ribonucleotides. Recently, several different classes of hydrophobic umami-imparting compounds, the structures of which are quite different from MSG, have been reported. To obtain a novel umami-imparting compound, N-cinnamoyl phenethylamine was chosen as the lead compound, and a rational structure-optimization study was conducted on the basis of the pharmacophore model of previously reported compounds. The extremely potent umami-imparting compound 2-[[[2-[(1E)-2-(1,3-benzodioxol-5-yl)ethenyl]-4-oxazolyle]methoxy]methyl]pyridine, which exhibits 27,000 times the umami taste of MSG, was found. Its terminal pyridine residue and linear structure are suggested to be responsible for its strong activity. The time taken to reach maximum taste intensity exhibited by it, as determined by the time-intensity method, is 22.0 s, whereas the maximum taste intensity of MSG occurs immediately. This distinct difference in the time-course taste profile may be due to the hydrophobicity and strong receptor affinity of the new compound.  相似文献   

18.
In long-term two-bottle tests, mice from the C57BL/6ByJ (B6) strain drink more monosodium L-glutamate (MSG) and inosine-5'-monophosphate (IMP) compared with mice from the 129P3/J (129) strain. The goal of this study was to assess the role of afferent gustatory input in these strain differences. We measured integrated responses of the mouse chorda tympani and glossopharyngeal nerves to lingual application of compounds that evoke umami taste in humans: MSG, monoammonium L-glutamate (NH(4) glutamate), IMP and guanosine-5'-monophosphate (GMP) and also to other taste stimuli. Chorda tympani responses to MSG and NH(4) glutamate were similar in B6 and 129 mice. Chorda tympani responses to IMP and GMP were lower in B6 than in 129 mice. Responses to umami stimuli in the glossopharyngeal nerve did not differ between the B6 and 129 strains. Responses to MSG, IMP and GMP were not affected by sodium present in these compounds because B6 and 129 mice had similar neural taste responses to NaCl. This study has demonstrated that the increased ingestive responses to the umami stimuli in B6 mice are accompanied by either unchanged or decreased neural responses to these stimuli. Lack of support for the role of the chorda tympani or glossopharyngeal nerves in the enhanced consumption of MSG and IMP by B6 mice suggests that it is due to some other factors. Although results of our previous study suggest that postingestive effects of MSG can affect its intake, contribution of other gustatory components (e.g. greater superficial petrosal nerve or central gustatory processing) to the strain differences in consumption of umami compounds also cannot be excluded. Strain differences in gustatory neural responses to nucleotides but not glutamate suggest that these compounds may activate distinct taste transduction mechanisms.  相似文献   

19.
The X-ray diffraction analysis of N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N'-p-chlorophenyloxamide (1), N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N',N'-diethyloxamide (2), N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl), N'-methyl, N'-phenyloxamide (3), N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl), N'-ethyl, N'-phenyloxamide (4) was performed. It was found that the oxamide group in compounds 1-4 can be characterized as two structurally independent amides because there is no pi conjugation across the oxalyl OC-CO bond. Only the oxamide group of 1 is planar and adopts trans conformation stabilized as two intramolecular N-H...O hydrogen bonds.  相似文献   

20.
Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000-5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague-Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号