首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
Abstract Considerable progress has been made in the last few years in understanding the mechanisms of microbial degradation of halogenated aromatic compounds. Much is already known about the degradation mechanisms under aerobic conditions, and metabolism under anaerobiosis has lately received increasing attention. The removal of the halogen substituent is a key step in degradation of halogenated aromatics. This may occur as an initial step via reductive, hydrolytic or oxygenolytic mechanisms, or after cleavage of the aromatic ring at a later stage of metabolism. In addition to degradation, several biotransformation reactions, such as methylation and polymerization, may take place and produce more toxic or recalcitrant metabolites. Studies with pure bacterial and fungal cultures have given detailed information on the biodegradation pathways of several halogenated aromatic compounds. Several of the key enzymes have been purified or studied in cell extracts, and there is an increasing understanding of the organization and regulation of the genes involved in haloaromatic degradation. This review will focus on the biodegradation and biotransformation pathways that have been established for halogenated phenols, phenoxyalkanoic acids, benzoic acids, benzenes, anilines and structurally related halogenated aromatic pesticides. There is a growing interest in developing microbiological methods for clean-up of soil and water contaminated with halogenated aromatic compounds.  相似文献   

2.
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.  相似文献   

3.
Biodegradation of halogenated organic compounds.   总被引:32,自引:2,他引:30       下载免费PDF全文
In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant compounds. Recent developments in designing recombinant microorganisms and hybrid metabolic pathways are discussed.  相似文献   

4.
Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions.  相似文献   

5.
Contemporary data on the mechanism of biodegradation of aromatic hydrocarbons and biodegradation genes (genomic organization and pathways of evolution) in diverse groups of microorganisms have been reviewed. Studies of this problem are topical, in view of the need in identification and construction of new strains degrading xenobiotics, particularly those halogenated. For this reason, emphasis is placed on specific features of explored metabolic pathways that can be used for constructing new enzymatic systems not present in nature. Sections on the mechanisms of genomic rearrangements involving biodegradation determinants are presented from the same standpoint. Part of the review is devoted to analyzing methods used for studying the population dynamics of bacterial communities involved in xenobiotic degradation in natural biotopes or industrial waste disposal plants. Particular attention is given to methods of gene systematics.  相似文献   

6.
Contemporary data on the mechanism of biodegradation of aromatic hydrocarbons and biodegradation genes (genomic organization and pathways of evolution) in diverse groups of microorganisms have been reviewed. Studies of this problem are topical, in view of the need in identification and construction of new strains degrading xenobiotics, particularly those halogenated. For this reason, emphasis is placed on specific features of explored metabolic pathways that can be used for constructing new enzymatic systems not present in nature. Sections on the mechanisms of genomic rearrangements involving biodegradation determinants are presented from the same standpoint. Part of the review is devoted to analyzing methods used for studying the population dynamics of bacterial communities involved in xenobiotic degradation in natural biotopes or industrial waste disposal plants. Particular attention is given to methods of gene systematics.  相似文献   

7.
Biodegradation of Aromatic Compounds by Escherichia coli   总被引:3,自引:0,他引:3       下载免费PDF全文
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.  相似文献   

8.
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.  相似文献   

9.
10.
芳香烃类化合物(aromatic hydrocarbon compounds)是一类基于苯环结构的有机物,广泛分布在自然环境中,难以自然降解、易被生物积累,且有很大的环境危害性。生物法是有机化合物转化降解的主流工艺,而电活性微生物(electroactive microorganisms, EAM)因其独特的胞外电子传递(extracellular electron transfer, EET)能力和生理代谢模式在芳香烃类化合物污染修复领域具有巨大的应用潜力。电活性微生物可以通过还原脱卤、脱硝与氧化开环过程相结合的方式,最终实现芳香烃类污染物的降解矿化。本文重点综述了电活性微生物降解芳香烃类污染物过程中主要还原/氧化反应机理,归纳了电活性微生物高效还原脱卤、脱硝的关键酶活、代谢途径及转化机理,分析了不同含氧条件下电活性微生物开环方式及降解代谢途径,并通过调控微生物胞外聚合物与添加导电材料等途径来提升电活性微生物的胞外电子传递过程,总结了电极电位、电极材料、电解液性质及温度等环境因子对芳香烃类化合物降解的影响,探讨了芳香烃类污染物的强化生物降解策略的可行性。最后,展望了电活性微生物降解技...  相似文献   

11.
环境微生物介导的木质素代谢及其资源化利用研究进展   总被引:5,自引:2,他引:3  
梁丛颖  林璐 《微生物学通报》2020,47(10):3380-3392
木质素是一种丰富的芳烃生物大分子聚合物,其分解代谢与地球元素循环和生物资源利用密切相关。但由于木质素结构的复杂性和无规则性导致其难以降解,使得木质素降解的研究成为全球碳循环和生物质资源利用研究的难点。近年来,来自不同环境的微生物陆续被发现具有木质素降解能力,并解析出参与木质素分解代谢的多种氧化还原酶。然而对木质素详细的代谢过程仍不十分清楚,因此,探究木质素降解酶系、作用机理和代谢网络是研究微生物代谢木质素机理的关键。本文综述环境中参与木质素降解的微生物,重点解析其木质素解聚酶系组成、分泌机制和木质素的代谢途径,并在此基础上阐明近年来木质素生物转化的最新研究进展,以期为今后环境微生物代谢木质素机理及其资源化利用的研究提供参考。  相似文献   

12.
Abstract

Among aroma compounds interesting for the food industry, lactones may be produced by biotechnological means using yeasts. These microorganisms are able to synthesize lactones de novo or by biotransformation of fatty acids with higher yields. Obtained lactone concentrations are compatible with industrial production, although detailed metabolic pathways have not been completely elucidated. The biotransformation of ricinoleic acid into gamma-decalactone is taken here as an example to better understand the uptake of hydroxy fatty acids by yeasts and the different pathways of fatty acid degradation. The localization of ricinoleic acid beta-oxidation in peroxisomes is demonstrated. Then the regulation of the biotransformation is described, particularly the induction of peroxisome proliferation and peroxisomal beta-oxidation and its regulation at the genome level. The nature of the biotransformation product is then discussed (4-hydroxydecanoic acid or gamma-decalactone), because the localization and the mechanisms of the lactonization are still not properly known. Lactone production may also be limited by the degradation of this aroma compound by the yeasts which produced it. Thus, different possible ways of modification and degradation of gamma-decalactone are described.  相似文献   

13.
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.  相似文献   

14.
Kim SI  Kim JY  Yun SH  Kim JH  Leem SH  Lee C 《Proteomics》2004,4(11):3610-3621
Pseudomonas sp. K82 is a soil bacterium that can degrade and use monocyclic aromatic compounds including aniline, 3-methylaniline, 4-methylaniline, benzoate and p-hydroxybenzoate as its sole carbon and energy sources. In order to understand the impact of these aromatic compounds on metabolic pathways in Pseudomonas sp. K82, proteomes obtained from cultures exposed to different substrates were displayed by two-dimensional gel electrophoresis and were compared to search for differentially induced metabolic enzymes. Column separations of active fractions were performed to identify major biodegradation enzymes. More than thirty proteins involved in biodegradation and other types of metabolism were identified by electrospray ionization-quadrupole time of flight mass spectrometry. The proteome analysis suggested that Pseudomonas sp. K82 has three main metabolic pathways to degrade these aromatic compounds and induces specific metabolic pathways for each compound. The catechol 2,3-dioxygenase (CD2,3) pathway was the major pathway and the catechol 1,2-dioxygenase (beta-ketoadipate) pathway was the secondary pathway induced by aniline (aniline analogues) exposure. On the other hand, the catechol 1,2-dioxygenase pathway was the major pathway induced by benzoate exposure. For the degradation of p-hydroxybenzoate, the protocatechuate 4,5-dioxygenase pathway was the major degradation pathway induced. The nuclear magnetic resonance analysis of substrates demonstrated that Pseudomonas sp. K82 metabolizes some aromatic compounds more rapidly than others (benzoate > p-hydroxybenzoate > aniline) and that when combined, p-hydroxybenzoate metabolism is repressed by the presence of benzoate or aniline. These results suggest that proteome analysis can be useful in the high throughput study of bacterial metabolic pathways, including that of biodegradation, and that inter-relationships exist with respect to the metabolic pathways of aromatic compounds in Pseudomonas sp. K82.  相似文献   

15.
The reactivity and toxicity of metabolic intermediates that are generated by initial biotransformation reactions can be a major limiting factor for biodegradation of halogenated organic compounds. Recent work on the conversion of haloalkanes, chloroaromatics and chloroethenes indicates that microorganisms may become less sensitive to toxic effects either by using novel pathways that circumvent the generation of reactive intermediates or by producing modified enzymes that decrease the toxicity of such compounds.  相似文献   

16.
Wang G  Liang B  Li F  Li S 《Current microbiology》2011,63(5):450-457
Chlorothalonil (TPN; 2,4,5,6-tetrachloroisophthalonitrile) has been widely used as a broad-spectrum chlorinated aromatic fungicide and its application resulted in global pollution commonly detected in the diverse ecosystems. Recently, microbial degradation of TPN has been studied extensively as an effective and environmental-friendly method to reduce TPN residue levels in the environment. This review summarizes the current knowledge of recent developments in the biodegradation of TPN. Diverse pure culture strains capable of degrading TPN were widely distributed among Proteobacteria and several metabolic pathways of TPN biotransformation were discovered. The two key genes (glutathione S-transferase and chlorothalonil hydrolytic dehalogenase coding gene) responsible for the conversion of TPN and recent findings for future practical bioremediation of TPN-contaminated ecosystem are also discussed.  相似文献   

17.
Degradation of halogenated aliphatic compounds: The role of adaptation   总被引:1,自引:0,他引:1  
Abstract: A limited number of halogenated aliphatic compounds can serve as a growth substrate for aerobic microorganisms. Such cultures have (specifically) developed a variety of enzyme systems to degrade these compounds. Dehalogenations are of critical importance. Various heavily chlorinated compounds are not easily biodegraded, although there are no obvious biochemical or thermodynamic reasons why microorganisms should not be able to grow with any halogenated compound. The very diversity of catabolic enzymes present in cultures that degrade halogenated aliphatics and the occurrence of molecular mechanisms for genetic adaptation serve as good starting points for the evolution of catabolic pathways for compounds that are currently still resistant to biodegradation.  相似文献   

18.
Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working in a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.  相似文献   

19.
A Pseudomonas sp. (S1), isolated from soil by an enrichment technique was tested for its potential to degrade different cyanide compounds. Further, biodegradation/biotransformation of binary mixtures of the cyanide compounds by the culture was also studied. The results indicated that the culture could grow on the following nitriles by using them as carbon and nitrogen sources: acetonitrile, butyronitrile, acrylonitrile, adiponitrile, benzonitrile, glutaronitrile, phenylacetonitrile, and succinonitrile. Studies on the biodegradation of these cyanide compounds in binary mixtures showed that the presence of acrylonitrile or KCN delayed the degradation of acetonitrile in a mixture, while none of the other cyanide compounds affected the degradation of one another. The transformation products of the nitriles were their corresponding acids, and similarly, KCN was also directly transformed to formic acid. Studies on the transformation of these cyanide compounds showed that the rate of transformation of nitriles to their corresponding carboxylic acids was acrylonitrile > acetonitrile > adiponitrile > benzonitrile > KCN. This culture has the unique characteristic of transforming representatives of saturated aliphatic, aliphatic olefinic, aromatic, and aralkyl nitriles, as well as alkali cyanide, to their corresponding carboxylic acids.  相似文献   

20.
Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号